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Abstract
In the present work, we start from a minimal Hamiltonian for Fermi systems
where the s-wave scattering is the only low energy constant (LEC) at play. The
many-body perturbative approach that is usually valid at rather low density is
first discussed. We then use the resummation technique with the ladder
approximation to obtain compact expressions for both the energy and/or the on-
shell self-energy in infinite spin-degenerated systems. The diagrammatic
resummation technique has the advantage in general to be predictive in a region
of density larger compared to many-body perturbation theory. It also leads to a
non-diverging limit as ∣ ∣  +¥as . Still, the obtained expressions are a rather
complex function of the Fermi momentum kF. We introduce the full phase-space
or the partial phase-space approximations respectively applied to the energy or
to the self-energy to simplify their dependences in terms of (askF) while keeping
the correct limit at low density and the non-diverging property at large ∣ ∣a ks F .
Quasi-particle properties of the Fermi system in various regimes of density and
scattering length are then illustrated. Our conclusion is that such simplified
expressions where the direct link is made with the LEC without fine-tuning can
provide a clear guidance to obtain density functional theory (DFT) beyond the
perturbative regime. However, quasi-particle properties close or near unitarity
cannot be reproduced unless this limit is explicitly used as a constraint. We
finally discuss how such approximate treatment of quasi-particles can guide the
development of DFT for strongly interacting Fermi systems.

Keywords: energy density functional, Fermi systems, neutron matter,
self-energy
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1. Introduction

Strongly interacting many-body Fermi systems can sometimes be described by rather simple
density functional theories (DFT). This is the case of nuclear systems where simple func-
tionals, like those based on the Skyrme type contact interactions [1–4], are nowadays widely
used. With very few parameters, the functional can describe static, thermodynamical and
dynamical properties very accurately in a unified framework. This is even more surprising in
view of the complexity of the strong multi-body interaction between nucleons. The question
(a) ‘How such simplicity can emerge in strongly interacting Fermi systems?’ is still largely
open in the nuclear physics community (see discussion in [5]).

This situation is not unique in nature. Simple DFTs apply also to the case of Fermi gas at
unitarity. This gases are characterized by infinite s-wave scattering length as in the dilute
regime. In this case, the energy becomes directly proportional to the free Fermi Gas energy.
This situation can be seen as one of the simplest DFT one could ever imagine. Still, while in a
DFT framework unitary gases can be described in a rather simplistic manner (see for instance
[6–8]), their treatment starting from a particle–particle interactions, requires rather advanced
many-body techniques like Monte-Carlo (MC) methods [9–15], Self-Consistent Green
Function [16, 17], Brueckner Hartree–Fock (BHF) [18], Blod Diagrammatic MC [19, 20]
eventually associated to resummation technique based on conformal-Borel transformation
[21]. These approaches generally rely on rather involved numerical methods and usually
prevent from connecting analytically the energy with the low-energy constants (LEC) asso-
ciated to the underlying interaction. To our opinion, to reply to the question (a) it would be
desirable to also give some hints on the other question (b) ‘Can we qualitatively or quanti-
tatively connect the parameters of the DFTs used in strongly interacting Fermions with the
low-energy constants of the interaction?’ Assuming that we can directly connect the para-
meters used in a functional to the LEC of the interaction, this would render the DFT com-
pletely non-empirical. This would also be at variance with the strategy used nowadays to
construct a DFT. Indeed, most currently used DFTs in cold atoms or in nuclei are usually
directly adjusted either on experimental data or on pseudo-data obtained using one of the
ab initio methods mentioned above. Such direct fitting procedure is very powerful because it
includes automatically complex many-body correlations in the DFT. It also leads in general to
a very precise description of the global properties of Fermi systems. This is for instance the
case in atomic nuclei were the precision on the ground state energy is better than 2%–3% for
medium mass nuclei and goes down to 0.5% for heavy systems (see for instance [22, 23]).
This strategy has also some drawbacks. Among them, we usually face the difficulty that some
components of the functional are not really constrained by the experiments. This is for
instance the case of the density dependence of the symmetry energy in nuclei that is parti-
cularly important for the physics of exotic nuclei. Another example that was pointed out
recently is the failure of empirical functionals to properly describe the low density limit of
neutron matter [24]. One should mention that, with recent progresses in the nuclear inter-
action and in ab initio many-body techniques, there is an increasing interest in developing
DFTs directly starting from a clear many-body framework. Among the recent works, we
mention the Density Matrix Expansion proposed already some time ago [25, 26] that has
reached now a certain level of maturity [27–32]. Another clearly defined approach is to write
the effective action and use the inversion method as proposed in [33, 34] (see also the recent
interesting progress of [35]). Still, the quantitative description of strongly interacting systems
beyond the low density limit and/or beyond the Hartree–Fock approximation is a rather
difficult task.
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For this reason, we explore here qualitatively how a DFT can be obtained for three
dimensional infinite Fermi systems where the parameters of the DFT are directly linked to the
LEC of the interaction. More specifically, we consider the simplified problem where the
interaction is described by a single LEC, as, and where the interaction strength can vary from
the perturbative to the non-perturbative regime. Such physical situation was explored in
different regimes using standard many-body techniques starting from an Effective-Field-
Theory approach [36, 37]. For instance, the low density limit was studied in [38]. This case is
particularly highlighting since in this case, up to third order in perturbation, the energy can be
written as a simple polynomial (and potentially polylogarithmic from fourth order) of ρ1/3

where ρ denotes the density. The perturbative approach breaks down when (askF) increases. In
this case, DFT have also been obtained using diagrammatic resummation techniques [39, 40].
Both perturbation and resummation to obtain compact expressions of the energy in terms of
(askF) will be briefly discussed here. As we will see, the brute-force resummation however
generally suffers from the lack of predictive power especially close to the unitary limit.
Following [39], we show that, using a procedure called hereafter phase-space approximation,
the energy can be written as a simplified functional of (askF) that in addition improves the
description of strongly interacting systems. The work of [39] was actually the starting point of
several new developments in the nuclear many-body context. In [24], guided by the simplified
expression of the energy, a hybrid functional was proposed where some of the parameters are
directly connected to as. Similarly, in [8, 41], a non-empirical functional was proposed that
could reproduce both cold atoms gases and neutron matter up to ρ; 0.01 fm−3 including the
effective range effect. Such new functionals were also used in [41] (see figure 6 of this
reference) to understand the quantitative values of parameters that are used in empirical
functional like Skyrme DFT. It was shown that the LEC are strongly renormalized due to in-
medium effects. This actually was also recently shown using BHF in [42] and was encoded in
the ELYO functional through density dependent coupling constants in [43]. A review on the
novel scientific activities in this field can be found in [44] (see also the recent work [45] for
application to finite systems including pairing).

The thermodynamical properties of strongly interacting systems was studied in [46] using
one of the functional proposed recently. While most of the observed properties of systems
close to unitarity were reproduced very accurately, two difficulties have been identified. The
first one is that the dynamical response function in the superfluid phase can without surprise
only be achieved by introducing explicitly the pairing field in the functional. The explicit
treatment of superfluidity is not the subject of the present work and we will concentrate on
normal systems. A second source of difficulty is the absence of clear prescription for the
effective mass in the large as limit. Such effective mass and more generally quasi-particle
properties are rather standard quantities helping to understand Fermi liquids. Its knowledge
are of particular importance for instance to understand certain properties like the static
response of neutron matter recently calculated with an ab initio theory in [47, 48]. It turns out,
for instance for neutron matter, that the effective mass in neutron systems is scarcely known
(see figure 6 of [46]) and has only been very recently estimated using Auxiliary-Field Dif-
fusion MC in [49] and BHF calculation [50, 51]. For this reason, we also explore the
possibility to obtain self-energies, for which direct contact with the Fermi liquid theory can be
made, as functionals of (askF) in the non-perturbative regime. In order to achieve this goal, we
also use resummation techniques and extend the phase-space approximation to the self-
energy. Finally, we briefly discuss how such analytical form can be useful in DFT approach.
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2. DFT for dilute systems from many-body perturbation theory

We concentrate here on systems where the only LEC at play is the s-wave scattering length as.
Infinite systems composed of spin-degenerated particles of mass m, i.e. a relevant situation for
non-polarized neutron matter and/or spin degenerated cold atoms, are investigated. Fol-
lowing [38] and using the Effective-Field Theory (EFT) approach for homogeneous dilute
Fermi gas, the s-wave interaction is simply written as a zero-range interaction that identifies
with a constant in momentum space:

⟨ ∣ ∣ ⟩ ( )¢ =k kV C , 1EFT 0

where k and ¢k are the relative momenta of the incoming and outgoing particles. The constant
C0 is linked to the scattering length as through ( = 1):

( )p
=C

a

m

4
, 2s

0

using the convention that a negative as is attractive, so that the s-wave scattering phase shift δs
verifies d = -k acot 1s s. The model case, where the interaction is dominated by as has been
widely exploited in Fermi systems in the past [52–56] (see also [57]). The interaction (1) has a
well-known ultra-violet (UV) divergence. In the present sections, we summarize some known
results for this model. Note that, the results have been obtained with proper treatment of the
UV divergence using standard techniques (in particular minimal subtraction scheme of
dimensional regularization). For more details see [58–64] as well as the extensive discussion
in [65].

Starting from the standard particle–hole representation of the propagator and following
[38], it is possible within the EFT to obtain a systematic perturbative expansion of the energy
of an homogeneous spin degenerated gas as

( )
( ) ( ) ( )

= + + + +
E

E

E

E
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E
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FG
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where E( n) denotes the contribution of the nth order in perturbation. r=E
3

5
k

mFG 2
F
2

denotes the

Free-Gas (FG) energy at density ρ and where the degeneracy is here g=2. The density is
linked to the Fermi momentum kF through ( )r p= -g k6 2 1

F
3. We recognize in (4) the Lee-

Yang expansion [52–54], also obtained using EFT in [38] that is valid at low density when
( ) a k 1s F . Higher order contributions can be evaluated analytically (or numerically) in a
similar way. For instance, the energy per particle at third order has been historically obtained
by Efimov and Amusia [66, 67], Baker [68] and Bishop [69] and was more recently discussed
in different works [40, 70–75]. Very recently, the fourth order has also been worked out [76].

One shortcoming of the perturbative expansion given by equation (4) is that it has a
rather limited range of application when the scattering length become anomalously large as it
happens in cold atoms [77, 78] and/or neutron matter [57]. Unless the expansion is made up
to infinity in equation (3), the deduced energy only applies below a certain maximum density.
For instance, the s-wave scattering length for neutron-neutron or proton-proton interaction is

~ -a 20 fms , leading to a range of validity in density ρ 10−6 fm−3 for the perturbative
expansion. Compared to the saturation density ρ0∼ 0.16 fm−3, i.e. typical density in nuclear
system, the perturbation theory is not appropriate to describe properly these systems at the
relevant density scale. In these cases, non-perturbative approaches are mandatory.
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3. Diagrammatic resummation technique for the energy

Motivated by systems with anomalously large scattering lengths, several strategies have been
proposed for selecting certain classes of diagrams and for providing compact expressions of
the energy in terms of ( )a ks F . Starting from the seminal work of [70], several attempts have
been made to obtain compact expression of the energy as a phase-space integral where
selected class of diagrams are summed to all order. Detailed discussion on diagrammatic
many-body approaches can be found in [79, 80] and specific aspects of the nuclear many-
body problem are reviewed in [81]. Here, we give two examples that will be the starting point
of the work made in the work presented in this article. Retaining only the particle–particle
(pp) ladder diagrams and after averaging over angles and using the minimal subtraction
scheme of dimensional regularization [58–64], the energy can be written as (see for instance
[39, 40, 70] and appendix A for the definition of s and t):

( ) ( )
( ) ( )

( )ò òp p
= +

-

-E

E
s s t t

a k I s t

a k F s t
1

80
d d

,

1 ,
. 5

s
s

sFG 0

1
2

0

1
F

F

2

Alternatively, using in-medium propagator where both particle–particle (pp) and hole–hole
(hh) propagators are accounted for simultaneously, the energy has been recast as [40, 82]:

( ) ( )
( ) ( )

( )ò òp p
= +

-

-E

E
s s t t
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1

80
d d arctan
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2

0

1
F

F

2

The explicit forms of the functions I, F, and R are given in appendix A. In the following,
results of the numerical integrations of equations (5) and (6) will be referred as Geometric
series Exact Integration (GEI) and Arctangent series Exact Integration (AEI), respectively.
Both equations (5) and (6) present several interesting features compared to a perturbative
expansion. Firstly, they could be expanded in powers of (askF) and, noteworthy, their second
order expansions match the Lee-Yang formula. We show in figure 1(a) a comparison of the

Figure 1. Energy in unit of the free Fermi gas energy as function of (a) ( )- a ks F and
(b) ( )-a ks F

1. The red solid and blue dashed lines are, respectively, obtained by direct
numerical integration of equations (5) and (6). For reference, the black dotted line
corresponds to the Lee-Yang formula obtained by truncating equation (4) at second
order. In both panels, the grey area indicates the result obtained by fitting the
experiment [83] with a Padé approximation while the black circles are the Diffusion
Monte-Carlo (DMC) results or [13]. In the inset of panel (b), a focus is made near
unitarity. In all panels, the arrow indicates the value of the Bertsch parameter
ξ0=0.37.
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energy obtained by integrating numerically the two resummed expressions as a function of
(askF).

One of the motivations for the use of resummation is that, contrary to any truncation at a
given order in perturbation the energy is not diverging as ∣ ∣  +¥a ks F , i.e. in the unitary gas
regime (see panel (b) of figure 1). This was firstly discussed in [39] for the GEI case and latter
in [40] for the AEI case. As noted in these works, the ratio:

( )
∣ ∣

x =
+¥

E

E
lim 7

a k
0

FGs F

generally refereed to as the Berstch parameter, significantly depends on the class of diagrams
selected for resummation. In the two cases considered here, we have:

( ) x x0.24 and 0.51. 8GEI AEI

These values in both cases significantly differ from the experimentally observed value of the
Bertsch parameter ξ0=0.37 [13, 17, 83, 84]. It should be however kept in mind that the
value of ξ0 corresponds to the one of a superfluid unitary gas while superfluidity is not
accounted for in the present resummation. Therefore, to be consistent, one should a priori
compare with the value of the Bertsch parameter in normal systems. In [18], using BHF
approach, a value 0.507 was found, which is compatible with the experimental result of [84]
giving 0.45. This value is actually consistent with the AEI case given by equation (6).
Nevertheless, one obvious conclusion is that the choice of certain diagrams significantly
affects the energy behavior as (askF) increases.

3.1. Phase-space approximation for the resummed energy

Despite the fact that the selection of diagrams influences the results of a resummation
approach, the resulting expressions of the energy in terms of ( )a ks F is an interesting steps
towards a DFT for interacting systems beyond the Lee-Yang formula. Still, the deduced
expressions are rather complicated especially due to the necessity to perform explicit inte-
grations on phase-space for all values of kF (note also that kF also appears in the definition of s
and t, see appendix A). This complexity can however be partially reduced using what we call
below a Phase-Space (PS) approximation. The PS approximation was discussed for the
Geometric series case in [39], it consists simply in replacing the numerator and denominator
entering in the integral, respectively, by their average values integrated over the phase-space,
leading in this way to a much simpler approximation. Let us introduce the notation ⟪ ⟫X
defined as:

⟪ ⟫ ( )ò òº
-

X s s t tX s td d , .
s

0

1
2

0

1 2

We see for instance that the GEI can be written as:
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The PS approximation consists of replacing this expression simply assuming:

⎧⎨⎩
⎫⎬⎭( )⟪ ⟫ ( ) ⟪ ⟫
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2
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This approximation still insures that the Lee-Yang expression is recovered up to second order
in (askF). Using the integrals given in appendix A.1, we obtain:

( )

( )( )
( )= +

- -
p

p

E

E

a k

a k
1

1 11 2 ln 2
. 11

s

sFG

10
9 F

6
35 F

This compact form, called hereafter Geometric Phase-Space (GPS), was introduced at several
occasions in the nuclear physics and/or cold atom context [39, 76, 85, 86]. The energy
obtained in the GPS approximation is shown in figure 2.

Equation (11) could be interpreted as a minimal Padé approximation in ( )a ks F at low
density, the Padé[1/1] recently shown for instance in figure 2 of [76]. We mention that Padé
approximations Padé[k/k] can be obtained (see for instance [85]) that could reproduce the
development (9) to a given desired order in (askF) for any k.

One important conclusion for the present work is that the energy obtained from
equation (11) largely extend the domain of density over which it reproduces the exact MC
result compared to the Lee-Yang formula, i.e. compared to the second order perturbation
theory. Essentially, above −(askF)=1 in figure 2, the Lee-Yang expression deviates sig-
nificantly from the exact calculation. Note that the inclusion of third order perturbation theory
only slightly extend the domain of validity. On contrary, we see in figure 2(a) that the
resummed formula follows closely the exact results and therefore it could be useful to obtain a
compact form for a DFT beyond the perturbative regime. The GPS approximation has indeed
been recently used in [24] to obtain a nuclear EDF where some of the parameters are directly
connected to the physical s-wave scattering length, contrary to the widely used Skyrme
EDF [2].

Although the main goal of the present work is to obtain DFT suitable beyond the
perturbative regime, we would like to mention also that the approximated form (11) leads to a
Bertsch parameter x = 0.32GPS , that is closer to the one obtain at unitarity for superfluid
systems [24, 39] compared to the one obtained with direct integration. It should be noted

Figure 2. Same as figure 1 using the GPS (red solid line) and APS (blue dashed line)
approximation.
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however that a relatively small difference in the value of ξ0 leads to large deviations in the
energy due to the fact that it is multiplied by the Free-Gas energy. For this reason, it was
proposed in equation (9) to relax the slightly the low density constraint and adjust directly the
denominator on the unitary gas in [8, 87]. Such strategy turns out to be highly predictive for
systems close and/or at unitarity [41, 46].

3.2. Phase-space approximation with arctangent resummation (Ladder approximation)

Using the same approximation as above, a phase-space approximation of equation (6) can be
obtained leading to the following compact expression, called hereafter Arctangent Phase-
Space (APS):

⎧⎨⎩
⎡
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⎧⎨⎩
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Then, making the summation to all orders and using the integrals given in appendix A.1, we
obtain:
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Illustrations of the energy dependence obtained in the APS approximation are shown in
figure 2. We note that the APS closely follow the GPS case at low density. This is indeed
expected since both are constructed to match the same Lee-Yang expansion for low density
Fermi gas. More surprisingly, the APS turns out to be very effective up to unitarity. It indeed
gives a Bertsch parameter equal to ξAPS ; 0.36 that is very close to ξ0. This is an interesting
finding since, contrary to the GPS case where the unitary limit can only be reproduce at the
price of degrading the description of the low density regime, in the APS case, both low
density (second order expansion in (askF)) and unitary limit can be very reasonably accounted
for without adjusting any parameter. Note that similarly to the geometric series case, one
might eventually replace the constant appearing in the denominator of equation (13) by a free
parameter adjusted to reproduce the unitary gas limit.

The two approximations (GSP, APS) introduced here are rather simple functions of kF
compared to the original GEI, AEI integral equations and therefore provide much simpler
functionals of the density ρ. One should mention a drawback of the phase-space approx-
imation (see figure 2). By using phase-space approximation in the denominator, one restrict
the value of (askF) that could be used. Indeed, while the integrated GEI and/or AEI integral
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forms can be applied from negative to positive values of as around unitarity, this is not the
case for the phase-space expressions where a pole appears for a certain positive value of as.
From now on, we will only consider the case where as is negative that is also the relevant
situation for neutron matter.

In summary, we have shown here that several functionals can be obtained that reproduce
quite well the energy of Fermi gases at unitarity. We would like to mention that the value
ξ0=0.37 is the admitted value of superfluid unitary gas. It might then be surprising to
reproduce this value with a functional originally motivated by the diagrammatic expansions
of [40, 82] where superfluidity is not treated. It is however important to keep in mind that
whatever is the motivation/strategy to produce a DFT, the only final criteria is the ability of
the functional to accurately describe the ground-state energy of the system at various den-
sities. This is actually the only purpose of a DFT constructed in the spirit of the original work
of Hohenberg and Kohn who have shown the existence of a functional able to reproduce the
exact energy consistently with the exact local one-body density [88, 89].

In the following, however we would like to consider directly the self-energy that is
a priori clearly beyond the scope of a DFT approach. In this case, the discussion made above
for the energy cannot be made and superfluidity should be explicitly introduced to describe
superfluid systems. Such a treatment is beyond the scope of the present work and in the rest of
the article, we will concentrate on non-superfluid systems.

4. Diagrammatic resummation for the self-energy

As noted in [46], functionals that do not explicitly use the concept of effective masses and/or
pairing gap will have difficulties to reproduce the excitation properties in strongly interacting
Fermi systems. This is one of the main motivation of the present work. Starting from a many-
body diagrammatic approach based on Green functions, a natural way to make connection
with the Fermi liquid theory is to use the concept of self-energy [57]. We concentrate here on
non-superfluid systems. Similarly to the energy case, the resummation of the contribution of
selected diagrams to all order can be made at the level of the self-energy. This was done for
instance in [82] (see also [65] for a complete discussion). We only give here the resulting self-
energies when either only pp diagrams or the pp and hh diagrams are retained. After
resummation, the self-energy can be written as (again with the convention p=k/kF)

1:

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

ò ò

ò ò

m
S

=Q -

+ Q - ¢

-

+ +





k
k k s s t t s t p

k k s s t t s t p

d d , ,

d d , , . 14

FG

s

p p

F
0

1
2

0

1

F
0

1 2
2

0

1 2

2

Here  and ¢ take different forms depending on the type of diagrams that are used. To avoid
confusion between these two cases we will use the following convention: Σ(k)=U(k)+iW
(k) for the self-energy obtained from the resummation of combined pp and hh ladder diagrams
and Σpp(k)=Upp(k)+iWpp(k) for the one where only pp ladder diagrams are used. The real
and imaginary parts of the self-energy enter into the single-particle (sp) energy ( )e k and the
lifetime γ(k) of the quasi-particle (qp), respectively. Similarly to the self-energy that could be
separated into a real and imaginary part, we can decompose  and ¢ as:

1 Note that, here, off-shell effects are neglected and we use the compact notation Σ(k) ≡ Σ(k, ωk) where
ωk=k2/(2m).

J. Phys. G: Nucl. Part. Phys. 46 (2019) 105104 A Boulet and D Lacroix

9



( )
( )

( ) ( ) ( )

( ) ( ) ( )

= +

= +

¢ ¢ ¢

¢ ¢ ¢

  

  

i pp and hh ladder diagrams ,

i pp ladder diagrams only .pp pp pp

The expressions of these functions are given in appendix B.1. The resummed self-energies of
[82] have a number of interesting properties.

First, for the two classes of selected diagrams considered here, in the low density regime,
the first and second order self-energies given by equation (16) are properly recovered by
construction. More precisely, expanding the self-energy in powers of (askF), we obtain:

( ) ( ) ( ) ( )
( ) ( )


m m m
S

=
S

+
S

+
k k k

15
FG

1

FG

2

FG

( ) ( ) [ ( ) ( )] ( )
p

= + F + W +a k a k p p
4

3
i 16s sF F

2
2 2

Here, we have defined ( )m º k m2FG F
2 and we introduced the reduced momentum p=k/kF.

The two functions Φ2(p) and Ω2(p) are related, respectively, to the real and imaginary parts of
the self-energy and are given in appendix B. Similar but slightly more general expressions
were derived in [90] by Galitskii (equations (34) and (35) of [90]) with the difference that the
expansion was made with respect to a small parameter f0 that identifies in the long wavelength
limit to the s-wave scattering length (see also the discussion in chapter 4 of [57]). For the sake
of simplicity, we will simply refer to equation (16) as the Galitskii formula in the following.
Additional interesting discussions can be found in [91–94]. These references might also be
useful to link eventually the present work with the theory of Fermi liquids. In particular, it
would be interesting in the near future to investigate how the renormalization effect that is
standardly employed in Landau Fermi liquid theory might be linked to the resummation
technique used here.

Below, we will essentially focus here on the real part of the self-energy. The quasi-
particle properties can be obtained from the behavior of the self-energy close to k=kF
(p=1) [95]. For instance, the chemical potential μ and the effective mass m* are, respec-
tively, linked to the value of U(k) and its derivative at k=kF:

( ) ( ) ( )m = + = +
¶
¶ =

k

m
U k

m

m

m

k

U k

k2
, 1 . 17

k k

F
2

F
F

F
*

Starting from the expansion (15) and making a Taylor expansion of each term around =k kF

(or p=1), one obtains a systematic approach to compute quasi-particle properties in powers
of (askF). For instance, up to second order in (askF)

2:

⎧
⎨⎪

⎩⎪
( ) ( )( )
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These expressions are well known results also discussed in [90]. In particular, the latter
equation is often referred to as the Galitskii mass formula.

2 To obtain this result, we used the Taylor expansion:

( ) ( ) ( )( ) ( )
p p

F = - - - - +p p
4

15
11 2 ln 2

16

15
7 ln 2 1 1 182 2 2
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Another interesting feature of the expression given in appendix B, is that the self-energies
do converge also to a finite result as ∣ ∣  +¥a ks F for all k. This is illustrated in figure 3
where the results of direct integration of equation (14) are shown as a function of k at
unitarity. Note that for the multidimensional numerical integration of the equations, we used
the Vegas method implemented in the Cuba library [97]. The single-particle energies defined
as:

( ) ( ) ( )e = +k
k

m
U k

2
, 20

2

and obtained in figure 3 coincides with those reported in [40] with marked bumps. These
bumps seems unphysical not only because they significantly differ from the BHF calculations
of [18] but also due to the presence of single-particle energies above the Fermi energy for
k<kF. We would like to mention that there is no reason that the deduced self-energy is
predictive at large scattering length due to the neglected diagrams. Another important remark
is that the BHF calculations cannot also be regarded as exact and should be taken here as an
illustration.

Starting from the different expressions, one can deduce from it, equation (17), the quasi-
particle properties by direct numerical integration. We show in figure 4 the evolution of μ and
m m* as a function of (askF) obtained in the two types of resummation considered here. We
see that both AEI and GEI approximation significantly extend the domain of validity com-
pared to the perturbative theory and the corresponding chemical potential extracted from them
are both rather close to the BHF result up to ∣ ∣a ks F  ;2–3. For the AEI case, it is remarkable
to see, especially having in mind the strange behavior of figure 3, that the chemical potential
extracted from the AEI case perfectly matches the BHF calculation for all regime of (askF).
We see however (panels (c) and (d) of figure 4) that the comparison is in general less
favorable for the effective mass. Both approximations overpredict the effective mass com-
pared to the BHF calculation for ∣ ∣ >a k 1s F , even if the agreement is slightly better than the

Figure 3. Single-particle energy as a function of k/kF obtained at strict unitarity by
direct integration of equation (14) with pp ladders only (red solid line) or both pp and
hh ladders (blue dashed line). For comparison, the green circles correspond to the
Brueckner Hartree–Fock calculation obtained without pairing effect [18] and the black
crosses to the best fit of the experimental results obtained [96].
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second or third order perturbation theory. We also observe that the effective mass, as well as
the chemical potential, obtained with each other strongly depend on the selected diagrams.

A last important remark for the discussion below is that the expression of the resummed
self-energies obtained either from pp ladders or combined pp and hh ladders resummations
are consistent with the GEI and AEI approximations given by equations (5) and (6),
respectively. Consistent means here that they respect the Hugenholtz-van-Hove (HvH) the-
orem [98]. This theorem (at zero temperature) states that the single-particle energy, given by
equation (20), evaluated at the Fermi surface ( =k kF) is equal to the chemical potential of the
systems. Using the thermodynamical relation between the chemical potential and the ground
state energy, ∣m = ¶ ¶E N V , where V is the unit volume, the HvH theorem leads to:

{ ( )} ( )m
m m

= +
¶
¶

= +
SE

E

k E E

k

k

5
1

Re
. 21

FG FG

F FG

F

F

FG

This equation gives a strong constraint between the energy and single-particle potential at
k=kF.

We have seen here that the resummation of diagrams is only a semi-success to predict
quasi-particle properties. More specifically, the effective mass deviates rather rapidly from the

Figure 4. Chemical potential and effective mass as a function of (askF) (panels (a) and
(c)) or ( )- -a ks F

1 (panels (b) and (d)) obtained with the GEI (red solid line) and AEI
(blue dashed line) approximations. Result of the second order (Galitskii formula) and
third order expansion [71] in (askF) are shown with black dotted and thin gray dashed
lines, respectively. The green circles correspond to the result of the BHF calculations
of [18].
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expected result as ∣ ∣a ks F increases. Although their predictive power is limited, the AEI and
GEI approximation can serve as a guidance to provide simplified expressions of the self-
energy that will be useful latter on the DFT context. We discuss below two approaches to
obtain compact expression of the single-particle potential.

4.1. Partial phase-space (PPS) approximation for the self-energy

As we have seen in section 3.1, the phase-space approximation, by avoiding the estimates of
rather complex integrals, automatically led to simplified expressions for the resummed energy
that turned out to be rather useful in practice [8, 24, 46]. The goal here is to develop an
equivalent method directly at the self-energy level.

The first difference compared to the energy is that the phase-space approximation should
not be made on all variables because the self-energy depends on k (or p). In the following,
starting from expression (14), for any function X that depends on the variable (s, t, p), we will
introduce the two averages:

⟨ ⟩ ( ) ( )ò òº<
-

X s s t t X s t pd d , , , 22p

s

0

1
2

0

1 2

⟨ ⟩ ( ) ( )
( ) ( )
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+ +

X s s t tX s t pd d , , , 23p

p p

0

1 2
2

0

1 2

that denotes PPS approximation at fixed value of p, respectively, relevant for p<1 and
p>1. With these notations, equation (14) writes:

( ) ( )⟨ ⟩ ( )⟨ ⟩
m
S

= Q - + Q - ¢< > 
k

k k k k .p p
FG

F F

Expressions of the PPS for some functions are given in appendix B.2.
Starting from these expressions, our goal is to provide for the self-energy a phase-space

approximation similar to the one for the energy given in section 3.1. Following the strategy
we used previously, we will impose the approximate form to fulfill specific constraints:

(i) Low density limit: We will always impose that the self-energy matches the exact self-
energy in the low density limit up to a certain order in (askF).

(ii) Large ( )a ks F limit: We also seek for expressions that do not diverge in the
limit ∣ ∣  +¥a ks F .

(iii) Consistency with the HvH theorem: While it is not a priori absolutely necessary, in
some cases, we will in addition impose that the self-energy we obtained should be
consistent with either the GPS or the APS energy. Again, consistency means here that the
considered self-energy and the energy obtained through phase-space approximation leads
to the same chemical potential using equation (21). Note that the latter condition is more
constraining than the condition (i) and (ii). In particular, since the energy already has the
constraints (i) and (ii), they will be automatically fulfilled when (iii) is explicitly imposed.

In the following, we present two strategies to get approximate self-energies using PPS. In
the first strategy called hereafter simple PPS approximation, we only impose conditions
(i) and (ii). While in the second strategy, that would be called consistent PPS, the form of the
energy deduced will also be constrained to one of the PS approximation discussed in
section 3.1 by requiring the HvH theorem to hold.
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4.2. Simple PPS approximation for the self-energy

We illustrate here a first simple strategy we can follow to impose (i) and (ii) avoiding
complicated integrals. Our starting point is equation (14). As an illustration, we consider the
specific case of the pp diagrams resummation and concentrate on the real part Upp of the self-
energy with p<1. Starting from the expressions given in appendix B, a direct expansion of
the denominator in (askF) gives:

( )
( ) ( ) ( )åm

= F
=

¥U k
a k p , 24

n
s

n
n

pp

FG 1
F

where the Φn(p) are given in terms of a PPS in the appendix by equation (B.10). For instance
Φ1(p)=4/3π while the expression of Φ2(p) is given by equation (B.1). In the following, we
will often use the second order approximation:

( ) ( ) ( )( ) ( ) ( )m p= + F + U k a k p a k a k4 3 25s s spp FG F 2 F
2

F
3

as a reference for the low density limit. Let us assume that we seek for an approximate form
of the self-energy that matches the expansion (24) up to second order in (askF) while being
non-divergent at large value of as. Guided by the approximation made for the energy, one
might simply use a Padé[1/1] approximate form:
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Note that, guided by the APS expression, a similar expression can be obtained that
approximate the AEI. From these expressions and using the expansion of Φ2(p) given by
equation (18), we immediately see that the low density limit of the chemical potential and
effective mass given by equation (19) are recovered. In addition starting from the expression
of μ(kF)=μFG+Upp(kF), the corresponding form of the energy in infinite systems can be
obtained using the relationship:

( ) ( )òr p
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g
k k k
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2
d , 27

k

2 0
F

2
F F

F

that can easily be obtained from the definition of μ as a partial derivative of the energy with
respect to the particle number.

We compare in figure 5 the dependences of the chemical potential and effective mass
obtained with the simple GPS approximation for the single-particle potential, respectively, as
a function of ( )- a ks F or ( )- -a ks F

1. By construction, contrary to an approximation where the
self-energy is truncated at a given order in (askF), simple GPS leads both to a smooth and
converging behavior of these quantities up to infinite values of as. These approximated self-
energies also reproduce correctly the low density limit. We see in particular that the chemical
potential obtained with the simple PPS approximation follows closely the one of the original
GEI result. We note also that the effective mass is more affected by the phase-space
approximation. It turns out to be slightly lower compared to the GEI case and closer quali-
tatively to the BHF results up to −(askF);3. Not surprisingly, as in the original result
obtained by direct integration, the large ∣ ∣a ks F limit is not correctly accounted for. One
difference we have observed however is that the dependence of ( )U kpp given by equation (26)
close to unitarity remains very smooth and does not present the bumps seen in figure 3.
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4.3. PPS with the HvH theorem constraint: illustration with the GPS functional for k<kF

The simple PPS approximation has some advantages. Among them, we note that the direct
strategy used in previous sections automatically leads to the correct low density limit while
the resulting single-particle potential Upp has a rather compact expression. We also saw that it
gives quite reasonable behavior much beyond the perturbative regime. One drawback is that
the corresponding energy obtained by direct integration through equation (27) turns out to be
more complex than typically the GPS and/or APS functionals given by equations (11) or
(13). For this reason, we explored a different strategy that consists directly in imposing the
constraint (iii), i.e. the energy obtained when applying equation (21) should match a pre-
selected expression of the energy (the APS, GPS expressions for instance). In practice, this
strategy is much less straightforward since the chemical potential is imposed whatever the
value of kF and as. It however has the direct advantage that all nice properties that were
obtained at the energy level are automatically incorporated in the single-particle potential.

Our starting point is to pre-suppose that we already know the expression of the energy in
terms of (askF). As an illustration, we consider below that the energy should match the GPS
energy given by equation (11) obtained by the pp ladder approximation. From the imposed
energy, and using equation (21), we obtained that the potential at k=kF should verify:

Figure 5. Comparison of the chemical potential (panels (a) and (c)) and effective mass
(panels (b) and (d)) obtained with the simple PPS approximation given by equation (26)
(green dot-long dashed line) and the original GEI result (red solid line). For
comparison, the BHF results [18] are also shown (green circles).
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where we have used the expression of Φ2(1) given by equation (18) directly recognized in the
chemical potential. From this, we see that imposing the HvH theorem at k=kF (or p=1)
gives us a strong guidance on the single-particle potential for ¹k kF (or ¹p 1). The simplest
approximation that could be directly inferred from μ to obtain the potential consists in
replacing Φ2(1) by Φ2(p), i.e.:
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The present single-particle potential presents several specific properties:

• First, similarly to the simple PPS approach presented in previous section, its expansion to
second order in (aSkF) matches the exact result for low density Fermi gas.

• It also has automatically a non-divergent behavior in the limit ∣ ∣  +¥a ks F . Due to the
HvH theorem constraint, the associated limit is compatible with the value of the
associated Berstch parameter, ξGPS in the present illustration.

• The form of the single-particle potential turns out to be slightly more complicated than in
the simple PPS approximation, equation (26). It is worth mentioning however that this
form has strong similarities with the single-particle potential obtained by pp ladder
approximation (see equation (B.7)), in particular with the presence of two terms with
similar (askF) dependence as in equation (28).

• Last, we note that the HvH constraint solely does not uniquely define the form of the
potential Upp. Indeed, we can fulfill this constraint and keep all above mentioned
properties using for instance the generalized formed:
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where the only constraint on X(p) is that ( ) =X 1 6 7. Again this flexibility should be
seen as a positive point since it might be used to impose additional constraints latter on. In
the following, we will generically denotes the potential given by equation (29) simply by
UGPSX

and refer to it as the GPSX approximation, while the case X(p)=6/7, leading to
equation (28) is simply called GPS approximation for the single-particle potential and is
noted as UGPS. Unless specified, results presented below will be obtained in the GPS
approximation.

Equivalent strategy can be followed starting from the APS approximation. Imposing the
HvH theorem consistent with the APS approximation for the energy, we end up with the
following expression for the single-particle potential:
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This approximation is called APSX hereafter. The only constraint on the function X(p) is now
( )= =X p 1 2 7. If we assume that this function is constant for all p, approximation called

simply APS hereafter, we end up with the single-particle potential:
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Again, all constraints (i)–(iii) are respected and whatever the explicit form of X(p), in the
infinite scattering length limit, we obtain the APS value for the Bertsch parameter.

The chemical potential and effective mass dependence in (askF) obtained with the con-
sistent GPS and APS scheme are displayed in figure 6, respectively, as a function of −(askF)

Figure 6. Chemical potential and effective mass as a function of ( )a ks F (panels (a) and
(c)) or ( )- -a ks F

1 (panels (b) and (d)) obtained with the GPS (red solid line) and APS
(blue dashed line) approximations. In panels (a) and (c), result of the second order
(Galitskii formula) and third order expansion [71] in (askF) are shown with back dotted
and thin gray dashed lines, respectively. The green circles correspond to the result of
the BHF calculations of [18].
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or −(askF)
−1. The conclusions are similar as for the simple GPS case presented previously,

i.e. the low density limit (respectively Lee-Yang and Galitskii formula) are properly repro-
duced by construction. The BHF results is reproduced qualitatively up to −(askF) ; 3 while
the perturbative expansion breaks down around ( )- =a k 0.5s F . We note however that the
result of the consistent APS approximation is slightly worse compared to the original AEI as
far as the chemical potential is concerned.

5. Quadratic and quartic approximation for the single-particle potential

Our targeted goal here is to provide DFT inspired by the many-body resummation technique
presented above. The clear advantage to start from the self-energy level instead of the energy
itself is that direct connections can be made between the self-energy and the Fermi Liquid
theory. This was illustrated previously with the chemical potential and the effective mass.
Such quantities are also standardly obtained with Energy Density Functionals for instance
used in the nuclear physics context, like Skyrme or Gogny EDFs. Empirical functionals,
especially the functionals derived using Skyrme like contact interactions lead to very simple
single-particle potentials (see discussion below) with polynomial dependence in k. For
instance, the original parameterization proposed in [2] leads simply to quadratic dependence
of the single-particle potential in infinite matter. Novel generations of Skyrme EDF have been
proposed leading to quartic or higher-order dependence in the momentum [99–101]. The
justification that such simple approximation can contain important physical aspects can be
found in [57]. The different single-particle potentials obtained in previous section presents
rather complex density and momentum dependence. However, starting from the PPS
approximation, one might obtain a systematic polynomial expansion to a given order in k. For
this, we approximate the self-energy obtained by assuming a polynomial form. We introduce
the following expansion:

( ) ( ) ( )( ) ( )( ) ( ) + + +U k U k U k k k U k k k 320 F 2 F F
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4 F F
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This polynomial expansion, truncated at an appropriate order will not only be useful to make
contact with empirical DFT but will also enable to obtain practical DFT for finite systems
based on the present approach.

5.1. Quadratic approximation for the self-energy

The simplest approximation that is also certainly the most highlighting one for the present
discussion is to consider quadratic single-particle potential, i.e. keeping only U0 and U2 in
equation (32). Only two constraints are then needed to obtain U0 and U2. One possibility is to
impose that some of the quasi-particle properties are exactly recovered. For instance,
imposing the chemical potential and the effective mass to be the same as the original ones
obtained with one of the PPS approximation leads to:
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Since they are used as constraint, the present method automatically insures that the quasi-
particle properties are preserved even if a simplified expansion is used for U(k). Since the
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chemical potential is also constrained, due to the relationship (27), the energy of the system
will also be preserved. Said differently, the GPS (resp. APS) approximation for the self-
energy combined with the polynomial approximation of U(k) will lead to the GPS (resp. APS)
reference energy given by equation (11) (resp. (13)). This does not necessarily imply that the
potentials are similar, however by construction, they should become identical as k becomes
close to kF. We compare in figures 7 and 8 for the GPS and APS cases, the original GPS and
APS potentials given by equations (28) and (31) respectively, with their quadratic
approximations for different values of (askF). We clearly see in this figure that the value
and the slope of U(k) at k=kF that are, respectively, linked to the chemical potential and the
effective mass are identical. However some differences are observed as k/kF goes to zero.
This also implies that some deviations occur with the second-order expansion of the self-
energy given by equation (25) when the quadratic form of the potential is used in the low
density limit. However, this approximation still leads to the proper behavior given by
equation (19) in this limit.

The difference observed between the original GPS or APS approximations and the
quadratic expansion given by equation (33) is further illustrated in figure 9 where we display
the single-particle energy obtained in different cases at k=0.

Figure 7. Momentum dependence of the approximated self-energy for ( )- =a k 0.01s F

(a), 0.1 (b), 1 (c) and ¥ (d) obtained with the GPS approximation (red solid line). In
each panel, the corresponding quadratic or quartic approximation are shown,
respectively, by the green dashed line and purple long-short dashed line.
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5.2. Quartic approximation for the self-energy

The agreement between the original potential and the polynomial expansion can be sig-
nificantly improved simply by going to a quartic form of the potential, i.e. by truncating the
expansion (32) to the next order. Then, the three parameters can be adjusted by adding to the
chemical potential and effective mass constraint, the additional constraint that the value of U
(k) at k=0 is identical to the one of the original GPS and APS approximation. We see in
figures 7 and 8, respectively, for the GPS and APS cases, that the quartic approximation
significantly improves the global shape of the potential compared to the original PPS
approximation.

6. Discussion on future developments towards non-empirical DFT for systems
with anomalously large scattering length

In the present work, we focused our attention to infinite systems where the interaction is
dominated by the s-wave channel and more specifically the s-wave scattering length. We
decided a specific strategy, starting from a well-defined many-body technique to obtain
energies written as a functional of (askF). The energy can then be directly interpreted as a
function of the one-body density ρ leading to a DFT for homogeneous system. These DFTs

Figure 8. Same as figure 7 for the APS approximation. The reference APS curve is now
shown with a blue long-dashed line.
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automatically describe low density system and have a priori no free adjustable parameters.
For this reason, we call them non-empirical. It is interesting to mention that the functionals
obtained here can be interpreted as Padé approximation. Such Padé approximation was
already used by Fayans [102] in the nuclear many-body problem with some success. There
are however significant difference between the functional designed here and the one proposed
in [102]. Besides the fact that the Fayans functional present a ratio of density dependent
terms, one major difference is that it has been adjusted to reproduce the equation of state of
neutron and symmetric matter. For instance, it does not reproduce the low density limit of
interacting Fermi liquid. Obviously, the goal of empirical nuclear DFT [3] is more ambitious
in the sense that it aims at reproducing globally nuclear system properties that results from a
much more complicated interaction, including all channels, than the one we study here.
Nevertheless, the possibility to get fully non-empirical DFT beyond the perturbative regime,
even for a simple interaction, is an important step toward less empirical nuclear DFT.

Figure 9. The single-particle energy ε(k=0) at zero-momentum obtained from the
GPS (red solid line) and APS (blue dashed line) single-particle potentials as a function
of ( )- a ks F (panels (a) and (c)) or ( )- -a ks F

1 (panels (b) and (d)). In panels (a) and (b)
(resp. (c) and (d)) the results obtained using a quadratic (resp. quartic) approximation
are shown in all panels by red solid line (GPS case) and blue dashed line (APS case).
Note that in the quartic approximation, by construction (see text) the value of ε(k=0)
is equal to the original APS or GPS value. The black dotted line and gray dashed line
correspond, respectively, to the value obtained from a quartic or quadratic
approximation starting from the second order (equation (25)) or third order [71]
expansion of the self-energy in (askF), respectively. In all panels, the green circles
correspond to the BHF results of [18].
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We observe that the DFT we have obtained here still lacks from predictive power for
instance for cold atoms close to unitary regime. Following [8, 46], one might eventually
slightly relax the low density constraint and add specifically the unitary gas limit as a specific
constraint. Unitary gas are indeed a well defined limit. This has been shown to provide very
good reproduction of cold atoms from low to unitary limit or neutron matter up to
ρ;0.001 fm−3 is the effective range effects is included. We did not add this constraint in the
present work due to the fact that our main priority was to obtain compact form of the self-
energy with no a posteriori parameter adjusted and that there is a lack of clear guidance for
normal unitary gas both for the single-particle potential and effective mass.

An important development that we are now pursuing is the possibility to apply the
functional to finite Fermi systems. Let us assume that we start from one of the energy density
functional given by equation (11) or equation (13), i.e. after PS approximation. Once the
energy is written in terms of powers of kF, this energy can directly be interpreted as a function
of the local density ρ. For infinite systems, the local density is just a constant. A standard
technique to export a DFT in infinite system to finite systems is to use a Local Density
Approximation (LDA) where the equation (3) is first transformed into an integral over space
of the energy density functional ( )ò=  rE rd3 . Here, ( ) r contains the kinetic and the
potential energy contributions that are both written in terms of the local density ( )r r . This
approach, that has some connections with the Thomas–Fermi approximation [103, 104], leads
to functionals of the local density consistently with the Hohenberg–Kohn theorem [88]. Such
direct mapping has initiated several novel ways to obtain DFT in the nuclear physics context
[24, 43, 45] (for a review see [44]). Similar strategy is now currently used in a different
context in order to incorporate quantum corrections that might stabilize quantum droplets
[105, 106]. It is however well known that the simple LDA approach should be generalized by
including properly the kinetic term as well as eventual gradient corrections. This is standardly
done for instance in empirical nuclear DFT [3] and this was also one of the main motivations
to extend our previous work from the energy to the self-energy.

To illustrate how a DFT beyond the LDA can be obtained from the present work, we
assume that our starting points are the expression of μ(kF) and ( )m kF* provided by one of the
PPS approximation. We then introduce the quantity:

( )
( )

( )r
r

º -


W
E

N

k

m

3

5 2
. 34

2
F
2

*

Note that the knowledge of μ(kF) is sufficient to obtained the energy through the relation (27),
thanks to the consistency requirement with the HvH theorem.

Following [104], we can show that this energy can be obtained from density functionals
valid in both finite and infinite systems of the form:

⎧⎨⎩
⎫⎬⎭( ) ( )

( )
( ) [ ( )] ( )òr t

t
r

r r= +E
m

W
r

r r r,
2

d , 35
*

where the local density ρ and kinetic density τ entering in this equation are given by:

( ) ∣ ( )∣ ( ) ∣ ( )∣ ( )å år j t j= = 
= =

r r r r, . 36
i

N

i
i

N

i
1

2

1

2

The states { }j play the role of the Kohn–Sham state. The Schrödinger equation they fulfilled
are obtained by minimizing the action ( ) ∣ ( )∣r t e j= - å  E r, i i i

2 where εi are Lagrange
multipliers that insures that single-particle are properly normalized to 1. Performing the
variation of the action with respect to ( )j ri

* gives the set of self-consistent Kohn–Sham
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equations:
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( ) ( ) ( ) ( )
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2
. , , 37i i i*
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( ( )) ( )r t t
r r r
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U

m
W,

2

1
. 38

2

*

This approach gives a definite strategy to go beyond the LDA using the functionals proposed
in the present work. Another interesting development for the future, especially to be able to
use current nuclear DFT solvers, would be also to interpret the different terms as density
dependent (t0, x0, t1, x1) Skyrme type parameters as it was done in [43, 45].

7. Summary

In the present work, we explore the possibility to start from a well-defined many-body
approach based on the diagrammatic resummation technique and obtain approximate
expressions both for the energy and/or the self-energy. While the present work is mainly
focused on this topic, the ultimate goal is to use these approximate expressions as a guidance
for proposing new DFT for Fermi systems beyond the perturbative regime. At the self-energy
level, two simplifications are considered that might help in the DFT context. We first propose
to use a PPS approximation leading to simpler density dependence of the self-energy and
ultimately of the associated energy. We show that the PPS approximation can be made either
by imposing the form of the energy simultaneously or not. In the former case, the constraint
on the energy is made using the HvH theorem consistency. If the energy is not used as a
constrained, the associated self-energy expression turns out to be simpler. In all cases, the
self-energy of low density Fermi gas is properly recovered while a non-diverging limit is
reached when ∣ ∣  +¥a ks F contrary to truncated perturbative many-body framework. It is
found in general that the combination of a resummation technique with phase-space
approximation can be used in a wider range of densities compared to many-body perturbation
theory. We note however that without any adjustment, the functionals are not predictive in the
unitary regime.

Besides the simplification introduced by the phase-space approximations, we note in
general that the resulting energy and/or self-energy present both smoother behaviors that turn
out to be qualitatively closer to the behavior calculated through BHF approach for non
superfluid systems compared to a direct use of the resummation approach without PS
approximation.

Guided by some phenomenological arguments commonly used for nuclei and also by the
success of simple empirical functionals like the Skyrme DFT in nuclear systems, the single-
particle potential is further simplified by assuming that the single-particle potential can be
approximated by a quadratic or quartic polynomial in k. This second approximation is made
in such a way that quasi-particle properties are preserved for all (askF). Again, this has the
advantage that the low density limit of the chemical potential or the effective mass identifies
automatically, respectively, with the Lee-Yang and Galitskii expression. We finally briefly
discuss how the possibility to have analytical density dependent expressions of these quasi-
particle properties can serve to design new DFTs. More generally, in view of the recent
scientific emulation that followed the use of resummed formula for the energy [8, 24, 43, 44],
the approximate expressions obtained in the present work can also be a strong guidance to
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obtain semi-empirical or non-empirical functionals constrained at low density or at unitary
or both.

The use of diagrammatic resummation leads to rather complex expressions in general.
For this reason, we focused here the discussion on a rather simple case of a non-superfluid
system with only one low energy constant, the s-wave scattering length focusing on the on-
shell self-energy. In addition, an extension to include off-shell effects would be a priori
desirable especially to describe the E-mass [107, 108]. Another natural extension of the
present work is to include also the s-wave effective range re and/or p-wave scattering volume.
The functional proposed in [8] and further discussed in [41, 46] already incorporate the effect
of the effective range on the energy density functional. At leading order, one could simply
add the present functional, however a proper treatment of the possible interference effects as
well as effects beyond the leading order is needed if ( )r ke F becomes large for instance. This
case happens for instance in nuclear system at saturation density. We did not consider here the
treatment of the effective range together with large scattering length, however we mention
that the work of [109, 110] can be use as a starting point.

Another important extension would be to include the effect of pairing correlations. As we
mentioned in the introduction, a prerequisite for the present study is the possibility to obtain a
compact expression of the energy after summing up selected diagrams to all orders in per-
turbations. By itself developing a perturbative approach on top of a quasi-particle vacua is
possible (see for instance [111, 112]). However, even at second order, by replacing the 2p-2h
energy by the 4 quasi-particle, the complexity of the integrals to be made increases sig-
nificantly. As far as we know, such problem has not be solved analytically. An alternative to
the analytical approach using a DFT guided by the present work would be simply to add
a posteriori a pairing energy to the DFT. This procedure is standardly used for nuclei and
would at least allow to extend to the so-called Superfluid LDA (SLDA) approach of [7] away
from unitarity.

Acknowledgments

We thank H F Arellano, J Bonnard, M Grasso, A Gezerlis, C-J Yang for useful discussions at
different stages of this work. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement No. 654002.

Appendix A. Useful definitions and integrals

In the main text, several quantities are written as an integrals over the phase-space. For the
sake of completeness, the different functions defined in the text as well as the different
variable are summarized in this appendix. Note that a complete derivation of all equations can
be found in [65].

Our starting point is the interaction matrix elements (1) written in momentum space as
⟨ ∣ ∣ ⟩k k k kV1 2 3 4EFT (note that, the spin is implicit and will lead to factors in the energy). Different
functions appearing in the integrals for the energy and/or self-energy are written as a function
of ∣ ∣= ss and ∣ ∣= tt where s and t are vectors defined through:

( )=
+

=
-

s
k k

t
k k

k k2
,

2
. A.11 2 1 2

F F
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After proper treatment of the UV divergence and after averaging over vectors relative
angles, it could be shown that the energy take the form (5) and (6), where I, F and R are given,
respectively, by [40, 82]:
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A.1. Integrals used for phase-space average of the energy

The following integral are used to obtain the Phase-space averaged resummed expression for
the energy:
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Appendix B. Functions used in the self-energy

The two functions entering in the second-order self-energy, equation (16) are given by [90]:
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Here, we use the Heaviside step function Θ(x) to shorten the notations.
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B.1. Functions entering in the expression of the resummed self-energies

Particle–particle and hole–hole ladder diagrams resummation: In this case, we write the
self-energy Σ(k)=U(k)+iW(k) as:
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The different functions are given by ( <k kF):
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and (k>kF):
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Note that, these results are equivalent those given by equations (18)–(21) of [82] except that
the sign convention for the scattering length is different (i.e. -a as s).

Particle–particle ladder diagrams only resummation: The resummed self-energy
Σpp(k)=Upp(k)+iWpp(k) is now given by:
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and (k>kF):
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The above quantities uses many more functions that are listed below:
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B.2. PPS average for different functions appearing in the self-energy

Starting from the expression (B.7), one can expand the potential as in equation (24) where the
Φn(p) are given by:
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The PPS useful in the article are given by (note that some of them are independent on p):
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