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The thermodynamical ground-state properties and static response in both cold atoms at or close to unitarity
and neutron matter are determined using a recently proposed density functional theory (DFT) based on the
s-wave scattering length a;, effective range r,, and unitary gas limit. In cold atoms, when the effective range
may be neglected, we show that the pressure, chemical potential, compressibility modulus, and sound velocity
obtained with the DFT are compatible with experimental observations or exact theoretical estimates. The static
response in homogeneous infinite systems is also obtained and a possible influence of the effective range on the
response is analyzed. The neutron matter differs from unitary gas due to the noninfinite scattering length and
to a significant influence of effective range, which affects all thermodynamical quantities as well as the static
response. In particular, we show for neutron matter that the latter response recently obtained in auxiliary-field
diffusion Monte Carlo (AFDMC) can be qualitatively reproduced when the p-wave contribution is added to the
functional. Our study indicates that the close similarity between the exact AFDMC static response and the free-gas
response might stem from the compensation of the a, effect by the effective range and p-wave contributions.
We finally consider the dynamical response of both atoms or neutron droplets in anisotropic traps. Assuming
the hydrodynamical regime and a polytropic equation of state, a reasonable description of the radial and axial
collective frequencies in cold atoms is obtained. Following a similar strategy, we estimate the equivalent collective
frequencies of neutron drops in anisotropic traps.

DOLI: 10.1103/PhysRevC.97.014301

I. INTRODUCTION The recent work on ab initio static response in neutron
system together with the recently developed density functional
proposed in Refs. [5,12] that makes a clear connection between
cold atoms and neutrons systems are the original motivations
of this work. Starting from this functional, we first analyze the
ground-state thermodynamical properties of both cold atoms
and neutron matter, some of them being directly linked to the
static response. In particular, we underline the key role played
in neutron matter by the effective range. We finally conclude
the work by an exploratory study of the collective response of
cold atoms and neutron droplets in an anisotropic trap.

The static and/or dynamical responses of many-body inter-
acting systems give important information on the interaction
between their constituents. In the past decade, important
progresses have been made on the understanding of diluted
cold atoms properties [1-4] with varying s-wave scatter-
ing length, eventually reaching the unitary gas (UG) limit
for which |a;kr|~' — 0. Due to the very large scattering
length in neutron matter, these progresses directly impact
nuclear physics and offer the possibility to address the nuclear
many-body problem from a new perspective [5—7]. Another
interesting progress in nuclear physics is the possibility to

. II. INTRODUCTION OF THE FUNCTIONAL
perform exact calculations based on quantum Monte Carlo

or other many-body techniques [8,9]. However, contrary The functional proposed in Refs. [5,12] may be written as
to the cold-atom case, while many efforts have been made to

study the properties of nuclear Fermi systems in their ground Erc = &(askr,rekr)

states, very little is known from exact theories away from U

it. Very recently, the exact static response of neutron matter =120

at various densities has been studied in Refs. [10,11]. These 1 — (askp)~' U

benchmark calculations give new pieces of information on + Ro(rekr)

neutron matter and stringent constraints for other many-body [1 — Ri(askr)~"[1 — Ri(askp)~" + Ry(rekp)]’

approaches like the nuclear density functional theory (hereafter (1

called energy density functional [EDF]). In particular, it was o
noted in Ref. [11], that the empirical Skyrme EDF leads to static where &(askr,rekp) can be understood as a generalization of

response having significant differences with the exact case. the Bertsch parameter for finite s-wave scattering length ay
and effective range r,. Erg is the free Fermi-gas (FG) energy
given by
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TABLE 1. Values of the different parameters entering in the
functional. The parameters &, (Bertsch parameter), 1., and §, are de-
fined at the unitary limit (a;k)~" = O from the constraint & (a,kr —
00,1.kp) = & + (rekp)ne + (r.kr)?8. + ... with the values obtained
in Refs. [13,14]: & = 0.376, n, = 0.127, and 8, = —0.055.

Low density+Unitary gas

Us 1 — & = 0.62400
U, (1 — &) = 1.76432
Ro n. = 0.12700

R Jorn, = 1.54722
R, —8./n. = 0.43307

where N is the number of particles in a unit volume V. In the
present article, we will consider an infinite spin equilibrated
system formed of one particle type only (cold atoms or
neutrons). Then, the Fermi momentum kg is linked to the
density p through p = k} /(37?). The different parameters
are fixed by imposing specific asymptotic limits either in the
low density regime (a;kr) — 0 [15,16] and/or unitary limit
—(askp) — +00. Values of parameters obtained in Ref. [12]
are recalled in Table 1.

III. APPLICATION TO COLD ATOMS

The physics of cold atoms has attracted lots of attention
in the past decades [1-3]. One advantage in this case is the
possibility to adjust the s-wave scattering length at will while,
in some cases, effects of effective range and other channels can
be neglected. Assuming first that r, = 0, we end-up with the
simple functional that depends solely on the Bertsch parameter
&y in the unitary regime. The great simplification of the DFT
compared to other many-body theories stems from the fact that
any quantity that could be written as a set of derivatives of the
energy with respect of the density can be obtained in a straight-
forward manner. An illustration has been given in Ref. [5]
with the Tan contact parameter [17-19]. Below, we give other
examples with ground-state thermodynamical quantities.

A. Ground-state thermodynamical properties

Thermodynamical properties of atomic gases have been
extensively studied both at zero and finite temperature [4]. In

the present work, we concentrate on the zero-temperature limit.
Starting from a density functional approach, we summarize
below the expression of selected quantities as a function of
derivatives of the energy in homogeneous systems:

(i) Pressure:

dE/N
= p? . 3)
a0 |y
(i) Compressibility:
1/oP] \!
K= —(— ) , 4)
P\ p |y
leading to
1 2P d’E/N
L 2T )
pKk P ap* |y
(iii) Chemical potential:
oFE dpE/N E dE/N
ON |y oo |y N i |y
E P
= — 4+ —. 6
N + P (6)

(iv) Sound velocity and adiabatic index: From the above
quantities one can deduce the sound velocity ¢? =
(mpx)~" and the adiabatic index,

p dP 1
= —-——| =—. @)
Popl|y «kP
Alternative expressions can be obtained using directly the
quantity & introduced in Eq. (1) and its derivatives with respect
to the Fermi momentum.! These expressions are listed in
Table II together with specific limits obtained at or close to
unitarity.

I'The derivatives with respect to p can be transformed into derivatives
with respect to kr using 37%p = k3.
9 dkp 3 72 9
dp  dp dkp k3 dkp

TABLE II. Summary of some useful relations for the ground-state thermodynamical quantities. Top: expression of different quantities as a
function of &, defined in Eq. (1) and its derivatives with respect to k. Middle: Taylor expansion of the functional in powers of (a;kz)~! [r, = 0
case], the parameters ¢ and v are linked to the functional parameters through ¢ = (97/10)(1 — &)? ~ 1.101 andv = (3/5)(97/10)*(1 — &y)* ~
1.165 that are both close to 1 as found empirically in QMC calculations [20,21]. Bottom: Taylor expansion of Eq. (1) in powers of (r.kr) at

unitarity.

X/ Xrq E/Erc W/ irc = M(%&G)il KrG/k = %(lgfopgm)il P/Prg = P(%ngG)il
kr . .

As function of & £ £ {% s+§kﬁ~%+%§%§ E+ Y

Close to unitary limit _ _ _

—(akp)! _)arg & — (askp)'C & — %C(askp) ! 0 — Zgg(askF) ! £ — S(agkp)™!

- k;) Z0 —3(askp)~?v —(askp)™v +Z(askp)™? 2

Unitary limit

_(a ky)71 -0 g() + (rekF)ne 5() + %("ekp)fh gO =+ ?(rekF)ne EO + %(rekF)ne

(r, k;)F—> 0 +(rokr)*S, +1(rekp)*se +5 (rekr)?8e +2(rekr ).
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FIG. 1. The pressure (a), the isothermal compressibility (b), the chemical potential (c), and the sound velocity (d) as function of —(a;kz)™"
obtained from the functional Eq. (1) assuming r, = 0 (blue long dashed line). The quantity Py is defined as Py = (1t/ itrg )’ Prg. For comparison,
different experimental data or theoretical estimates are shown: (a) black filled circles are data from [22], QMC calculations from [23] (red
open circles), results obtained from a Noziére-Schmitt-Rink approximation (blue open triangles) [24], or with Green-function method (De
Dominicis-Martin formalism) (green open squares) [25]; (b) gray filled diamonds from [26]; (c) calculation from [27] (open orange squares),
and the green dotted line is obtained from the best fit to the QMC calculations [21] (data taken from Fig. 3 of Ref. [24]); (d) brown filled squares

and purple triangles are data, respectively, from Ref. [28] and Ref. [29].

In the following, we will normalize these thermodynamical
quantities to their corresponding values for the free FG case,
given by

2 1 10
Prg = - pépg,. — = —p&ra.
3 KEG 9
10 5 R2k?
2 F
= —¢&kG, = &g = ,
CrG om FG> MFG 3 FG m

where Exg is defined in Eq. (2).

Thermodynamical quantities obtained using the simple
functional for r, = 0 and arbitrary large negative scattering
length are compared in Fig. 1 with various experimental
observations and/or theoretical estimates. Not surprisingly, the
functional reproduces the unitary limit since it has explicitly
been adjusted to reproduce the Bertsch parameter &,. We see
that, despite its simplicity and the fact that the functional
only depends on &, it is able to reproduce rather well the
thermodynamics of Fermi-gas away from unitarity. It should be
noted that none of the Taylor expansions in (azk ) or (askp)~!
would be able to reproduce these quantities from very low to
very high densities, as illustrated in Fig. 2 for the pressure.
Similar behavior is obtained for the other quantities shown in
Fig. 1.

B. Nonzero effective range effect

In Fig. 2, we also show an example of evolution of ther-
modynamical quantities for nonzero effective range relevant
for neutron matter. In the present functional, the effect of r, is
mainly visible at large (ask ) values, i.e., close to unitarity. To
illustrate the dependence with r,, we consider the strict unitary
limit. In that case, the & function depends only on (r.kr) and
we deduce

ni(rekr)
Ne — 8e(rekr) '

from which all thermodynamical quantities can be calculated.
The effect of the effective range is predicted to increase the
apparent Bertsch parameter leading also to an increase of the
thermodynamical quantities at unitarity. This is illustrated in
Fig. 3 for the pressure, the chemical potential and the inverse
of the compressibility. We see in particular that the maximal
value of & at unitarity is & — n?/8. = 0.66, which is almost
twice the value of &, and therefore might be significant.

§(askp — —oo,rekp) =& + ®)

C. Ground-state thermodynamics of neutron matter

We have extended the above study to the case of neutron
matter for which we anticipate important influence of the
effective range r, as well as eventually of higher order chan-
nels contributions when the density increases. The different
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FIG. 2. Pressure as a function of —(a,kr)~" (a) or as a function of
—(askr) (b) obtained from the functional Eq. (1) assuming r, = 0 fm
(blue long dashed line). For comparison, the black short dashed and
the black short dot-dashed lines correspond to the Taylor expansion
to first order in (a;kr) or to first order in (askp)™", respectively. The
red solid line corresponds to the neutron matter case assuming r, =
2.716 fm. In both cases, a;, = —18.9 fm.

thermodynamical quantities obtained using the functional
Eq. (1) with realistic values of the low-energy constant a, and
r. are shown in Fig. 4. While at very low density the different
quantities are only slightly affected by effective range, we
indeed observe at densities of interest in the nuclear context,
ie., p ~0.05—-0.15 fm 3, differences with the cold atom
case.

IV. STATIC RESPONSE IN FERMI LIQUIDS

Some of the ground-state quantities discussed above are
directly connected to the static response of the Fermi system
to an external field. In general, the static response provides
interesting insight about the complex internal reorganization
in strongly interacting Fermi liquids [30,31]. The static or
dynamical responses have been the subject of extensive studies
in the context of nuclear density functional theory [32-36],
especially those based on the Skyrme EDF. As we will see,
in the latter case, the static response strongly depends on
the set of parameters used in the Skyrme EDF. Recently, the

(rekr)

FIG. 3. The pressure [X = P] (blue solid line), chemical poten-
tial [X = p] (red dashed line), and inverse compressibility [X = 1/«]
(green dot-dashed line) obtained at unitarity using the functional
Eq. (8) as a function of (r.kr). The arrow indicates the unitary limit
forr, = 0.

ab initio static response of neutron matter has been obtained
using AFDMC for the first time in Refs. [10,11], giving strong
constraints on nuclear EDF. One surprising result is that the
static response is very close to the free FG response. Below
we make a detailed discussion on the static response obtained
using the functional Eq. (1). Since the methodology to obtain
the static response is already well documented [30,31], we only
give the important equations used thorough the article.

A. Generalities on static response

Let us consider a system described by a many-body Hamil-
tonian H. A static external one-body field, denoted by Vi, is
applied to the system leading to a change of its properties. The
static response, denoted by y, contains the information on how
the one-body density and total energy vary with the external
field. x is defined through

5(r) = / P X (= ¥)Veulr), ©

where §p(r) = p(r) — po, p(r) and py being, respectively, the
local one-body density and the equilibrium density of the
uniform system in its ground state. From this, one can express
the static response formally as

, dp(r)
—r)y= (22 10
x(r—r1) (svm(r')) (10)
Performing the Fourier transform of Eq. (9), we simply have
5p(q) = x (@) Vexi(@). an

Following Refs. [10,11], we assume Vex(r) = 2 Zq v, cos(q-
r). The Fourier transform of Vi at q is then simply a constant
and we have for the energy
x(@)
Lo
The static response function is directly linked to the
compressibility « discussed above due to the asymptotic

E(q) = Eo+ Vot (12)
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FIG. 4. The pressure (a), the inverse of the compressibility (b), the chemical potential (c), and the sound velocity (d) obtained in neutron
matter as function of —(a,kr) using the functional Eq. (1) (red solid line). The case with r, = 0 (cold atom reference) is displayed with blue
dashed line. The green dot-dashed line corresponds to the result obtain by adding to the functional the leading order contribution of the p wave
(see text). In this figure, we use a, = 18.9 fm and r, = 2.716 fm so that —(a,kr) = 10, 20, and 30 correspond, respectively, to p = 0.005,

0.040, and 0.135 fm 3.

relationship

lim x(g) = —p’«. (13)
q—0

The function x(g) or its dynamical equivalent has been
extensively studied for the Skyrme EDF [36]. In Fig. 5, we give
examples of results obtained using different sets of Skyrme
parameters and compared them with the AFDMC results of
Refs. [10,11]. It is clear from this figure that there is a large
dispersion in the Skyrme EDF response depending on the
parameter sets. Such a dispersion is not surprising since it
is well known that the neutron equation of state is weakly
constrained in Skyrme EDF (see, for instance, Ref. [37]). In all
cases, even if the Skyrme EDF gives reasonable neutron matter
EOS, significant difference is observed with the exact AFDMC
result for all ranges of g/kp. This figure also illustrates the
fact that the exact result is very close to the free Fermi-gas
response.

An important ingredient of the response in Skyrme EDF is
the evolution of the effective mass as a function of the density.
Such evolution is shown in Fig. 6(a). Again, large differences
are observed between the different sets of Skyrme EDF. We also
show for comparison, the effective mass obtained in neutron
matter using alternative many-body techniques. In these cases,
the deduced effective mass are closer to the bare mass but still
significantly differ with each other.

In the absence of clear guidance for the effective mass
behavior, we simply assume below that m*/m = 1. Then, the

0.12
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0.04

—x(q)/p [MeV™]

0.02

0.0

(q/kr)

FIG. 5. Static response of neutron matter at density p = 0.1 fm >
obtained with the Skyrme EDF using the Sly4 (red thick solid line),
SkM* (blue dashed line), SkP (gray thin solid line), and SIII (green
dot-dashed line) sets of Skyrme parameters (see Ref. [38] for their
values). Note that the EDF results are obtained by neglecting the
spin—orbit term in the functional. Adding the spin-orbit contribution
does not change significantly the result. The black circles (with error
bars) are those of Ref. [11], while the black dotted line is the free
Fermi-gas static response.
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FIG. 6. (a) Evolution of the effective mass m*/m in neutron
matter as a function of —(aykr) (with a; = —18.9 fm) using Skyrme
EDF for the set of parameters used in Fig. 5 with the same lines
convention. (b) Evolution of the effective mass in neutron matter
deduced from selected many-body calculations: blue triangles [39],
red circles [40], green squares [41], black diamonds [42].

calculation of the static response within the density functional
approach reduces to

xo(q)
1= G()xo(@)

where xo(q) is the response of the free gas given in term of the
Lindhard function (dashed line in Fig. 5)

x(q) = (14)

mkp kp q \* q + 2kp
= F Mo () || EEEE
x0(q) 2n2h2{ Ty [ (2kF> My =2k,
mkp
=~ @/kn). (15)

The density-dependent coefficient G(p) is obtained from the
second derivative of the energy density after subtraction of the

0.3 -
R e Free gas )
—~ —— UGr.=0,§ =042 |
<3 0.25 — UG r.=0, & =0.376
=2 o™~ —- UG r, — 00, § = 0.376
= 02f i
= » o
= O T ——
50 p
o | .
005 F
r (]
OO ! 1 ! 1 !

q/kr

FIG. 7. Static response of unitary gas (UG) obtained with the
functional Eq. (8), assuming r, = 0 (black solid line) or r, - 400
(green dot-dashed line). The latter case corresponds to the maximum
effectinduced by r, and corresponds to an effective Bertsch parameter
equal to 0.66. The free Fermi-gas response (black dotted line) is
also shown as a reference. For comparison, the red filled circles
corresponds to the static response at unitarity obtained in Ref. [43],
using the SLDA where a slightly different value of the Bertsch
parameter & = 0.42 was assumed. For completeness, we also show
(blue dashed line) the UG result obtained with Eq. (8) for & = 0.42.

kinetic contribution. Explicitly, the energy can be rewritten as
an integral over the energy density through

E = / (K@) + V()}d°r,

where /C is the kinetic energy density and V is the potential
energy density. For uniform system, G(p) is given by

9%y
G(p) = (m) (16)

which could again eventually be transformed as partial deriva-
tives with respect to k.

1. Static response in unitary gas

We consider first the strict unitary gas limit with r, = 0. In
this case, we have

3 n’
V(p) = 55-(Bm)* 0> — 1). a7
Using this expression, we obtain

mkg f(q/kFr)
72h2 [+ — D f(q/kp)]

where f(q/kr) is defined through Eq. (15). In particular, we
see immediately that x(0) = x0(0)/&p, with x(0) = —;”fh@
that is a direct consequence of the property Eq. (13) and of
the fact that kg /k = &y in unitary gas (see Table II).

The full static response is shown in Fig. 7 and compared
to the result obtained in Ref. [43] using the superfluid local
density approximation (SLDA) proposed in Refs. [44,45].

x(@)=— (18)
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The static response calculated with the functional Eq. (15)
perfectly matches the SLDA result when the Bertsch parameter
is artificially increased to match the one used in the SLDA.
Note that the SLDA assumed a significant contribution from
the effective mass and account also for superfluid effects, which
is not the case in the present work. Therefore, an indirect
conclusion is that the static response for UG does not seem
to be significantly influenced in particular by superfluidity. We
would like to insist on the fact that this is most probably specific
to the response to a static field. Indeed, due to superfluidity,
the dynamical response will present a low-energy mode, the
so-called Bogoliubov-Anderson mode that has been studied,
for instance, in Ref. [46]. The superfluid nature of Fermi gas
at unitarity has been unambiguously directly probed by the
presence of lattice of quantized vortices in Ref. [47].

Note finally that the matching of the static response obtained
with the two functional approach observed in Fig. 7 is an
interesting information but it does not mean that the static
response is the correct one at unitarity. A comparison with
an exact calculation would be desirable (see also discussion in
Sec. VI).

The effect of r, at unitarity can be studied using the
generalization of Eq. (17):

V(p) = Exc(p)[§(rekr) — 1],

where £(r.kp) is given by Eq. (8). The predicted influence
of r, is illustrated in Fig. 7. The effective range induces a
global reduction of x(g). The maximum effect is achieved by
considering the limit ., — +o00 (green dot-dashed curve).

B. Static response in neutron matter

The neutron matter differs from the unitary gas by a finite
value of the scattering length as well as significant effect of
the effective range even at rather low density [12]. When the
density increases, it is also anticipated that higher partial waves
of the interaction contribute. Since our aim is to compare with
therecent result of Ref. [11] where the AV8 interaction has been
used, we use the functional Eq. (1) using the AV8 values for the
different parameters: a; = —19.295 fm and r, = 2.716 fm.
We note that the functional Eq. (1) reproduces well the energy
for rather low densities p < 0.02-0.03 fm~3 [12], while the
static responses of Ref. [11] have been obtained for p = 0.04
and 0.1 fm~>, which is not optimal for the comparison.

We show in Fig. 8 the static response obtained from the
functional Eq. (1) and compare it to the AFDMC results
of Refs. [10,11]. While slightly overestimated, especially in
the highest density considered, we first observe that the new
functional is in much better agreement than the empirical
functional considered in Fig. 5. For the considered densities, as
underlined in Ref. [12], the functional Eq. (1) can be accurately
replaced by its unitary gas limit, i.e., taking —(askr)~! = 0.
Indeed, replacing & entering in the full functional by £ given by
Eq. (8) leads almost to the same total energy and static response
(not shown). Still, the static response obtained by neglecting
the r, effect is rather far from the static response obtained with
the physical r,, underlying the key role played by the effective
range.

‘ ‘ L j
~— — full
T 0.16 \\\ ~—— full + p-wave |
= | \\ —— (as = —o0,1. = 0) ]
o 012 + |
= A f
= 0.08 - |
§ L
> 0.04
| (a)
0.0 :
q/kr
hal T
~~ - u N
0.09 \\ ~—-— full 4+ p-wave
i N —— (as = —o0,1, = 0)
\
0.06 > 1

0.03

—x(a@)/p [MeV™]

0.0

Q/kF

FIG. 8. Static response function obtained with the functional
Eq. (1) as function of g/ky for (a) p =0.04fm™> and (b) p =
0.1fm™3. The blue dashed line and red solid line correspond, re-
spectively, to the UG case (cold atom reference) and r, = 2.716 fm
(neutron matter case). Note that at the density considered, the UG case
cannot be distinguished from the neutron matter assuming r, = 0. At
both densities, the AFDMC results of Refs. [10,11] are shown with
blue open circles. The green dot-dashed line finally display the result
obtained by adding the p-wave contribution to the functional Eq. (1).
Consistently with the use of the AVS interaction in the AFDMC
calculation, we use a value af, = 0.0916 fm for the p-wave scattering
volume.

Following Ref. [12], we also study the possible influence
of the p-wave contribution by adding simply its leading order
contribution to the energy, that is

Ep 1 3

Erg n(a,,kp) .
The results are displayed in Fig. 8. We see that the p-wave term,
treated simply by its leading-order contribution does contribute
to the static response and, most importantly, the result is very
close to the ab initio one. For the sake of completeness, we
also report in Fig. 4 the different thermodynamical quantities
obtained by including the p-wave term. However, the contribu-
tion should only be taken here as indicative. As noted already
in Ref. [12], the inclusion of the leading term of the p wave
produces arather large, most probably unphysical, contribution
to the different quantities, and when density increases one
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FIG. 9. Evolution of the normalized static response as a function
of density for ¢ = kr (same as Fig. 15 of Ref. [11]). The AFDMC
results of Ref. [11] is shown by blue open circles. The result of the
functional Eq. (1) with r, = 2.176 fm and r, = 0 fm are shown by
red solid and blue dashed line, respectively. The result obtained by
adding the p-wave contribution to the functional is shown by green
dot-dashed line. The black dotted line corresponds to the free-Fermi-
gas limit.

should a priori properly account for the p-wave contribution
accounting from the resummation of the s-wave effect as
illustrated in Ref. [48]. This is out of the scope of the present
work.

Finally, to systematically quantify the effects of finite a;
and influence of r, and p wave, we have reproduced Fig. 15
of Ref. [11], where the normalized response function is shown
for different densities (Fig. 9). In this figure, we can clearly
see the importance of the effective range and to a lesser extent,
the slightly smaller effect of the p wave. Still the free-Fermi-
gas case is the one that best reproduces the AFDMC result.
However, this is most probably accidental in view of the strong
interaction at play in nuclear systems.

We finally would like to mention that we are unable with
the present density functional to reproduce the strong increase
of the response function as ¢ — 0O that is observed in the
AFDMC. This limitis directly connected to the compressibility
[see Eq. (13)]. The compressibilities predicted by our EDF
are pk = 0.108 MeV and px = 0.057 MeV at p = 0.04 fm >
and p = 0.1 fm >, respectively. These values are lower than
those reported in Ref. [11], which are, respectively, px =
0.19 MeV and pk = 0.089 MeV at p = 0.04 fm~ and p =
0.1 fm=>.

V. COLLECTIVE RESPONSE IN THE
HYDRODYNAMICAL REGIME

We conclude this work by using previous results to study
the collective excitations in cold atoms and neutron matter in
the hydrodynamical regime. For boson systems, the hydrody-
namical regime is well documented [49,50]. Similar technique
can be applied to fermionic superfluid systems. Note that here
we do not include explicitly the pairing correlations through
the anomalous density. However, the fact that we properly
describe the total energy of cold atoms is an indication that

pairing effect is accounted for in some way. For superfluid
Fermi system, the hydrodynamical regime is justified when the
collective frequency is below the energy necessary to break a
Cooper pair (see, forinstance, Ref. [51]). Our aim is to study the
dynamical response of a system confined in a trap, described
by an external potential U(r). At equilibrium, the external
field is counterbalanced by the internal pressure leading to the
equilibrium equation:

1
V2P(r) = =7 VLoo(®). VU )], 19)

where pp denotes the equilibrium density while P is the
pressure at equilibrium given by Eq. (3). We now consider
small amplitude oscillations around equilibrium such that
o(r,t) = po(r) + 8p(r,t) with 8p(r,t) = p;e’® 4+ H.c. The
linearization of the hydrodynamical equation leads to the
equation

2 1 212
w”pi(r) = —;V [o1VU @] = V?[cg(r)pi(0)],  (20)

where c(z)(r) is the local sound velocity defined through:
mc(z)(r) = d P(r)/dpo(r). This equation has been used in sev-
eral works to study collective oscillations in Fermi-gas around
unitarity [50-53]. Below we extend these studies by consider-
ing possible effect of nonzero r, and by going from cold atoms
to neutron matter.

A. Adiabatic index in cold atoms and neutron matter

For the sake of simplicity, we assume that the system has a
polytropic equation of state, i.e., that we simply have

P(r) o< py (1), @

where I' is the adiabatic index in the center of the trapping
potential. As in infinite system, we have the relation I' =
(k.P.)~!, where P. and k. denote the pressure and the com-
pressibility in the center of the trapping potential at equilibrium
given by Egs. (3) and (5). The quantity I" has been studied in
cold atoms for varying —(as;kr) in Ref. [20]. For vanishing .,
it is know that I' — 5/3 both in the unitary limit and in the
low density regime. For UG, when r, could not be neglected
anymore, using the functional Eq. (8), we predict that I" will
deviate from 5/3. The dependence of I" with the effective range
is shown in Fig. 10. We see that I" first increases and then
decreases. In the extreme limit r, — 400, it is possible to
show that we again obtain ' — 5/3.

More generally, we illustrate the dependence of I" obtained
with or without effective range effects in Fig. 11 for low-energy
constants taken from neutron matter.

For r, = 0, we qualitatively and quantitatively reproduce
the result of Ref. [20] with the presence of a minimum in
I' for —2.5 < (askr) < 0. While the minimum persists for
nonvanishing 7., we observe that it is slightly shifted to lower
values of |a;kr|. Overall, we see that r,, significantly affects the
evolution of I' that now presents a maximum and approaches
I' = 5/3 from above as —(a;kr) — +00.
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1.72

1.7

1.68

1.66

(TekF)

FIG. 10. Evolution of the nonadiabatic index I" at unitarity (red
solid line) deduced from the functional Eq. (8) as a function of (r.kf).
The arrow indicates the unitary limit for », = 0. For comparison, the
black short dashed line corresponds to the Taylor expansion of & to
second order in (r.kr).

B. Collective frequencies in anisotropic trap

As shown in Ref. [52], assuming polytropic equation of state
leads to rather simple expression of the collective oscillations in
deformed systems. More precisely, we consider here a system
confined in an anisotropic trap,

m
Ur) = Ewé(xz +y2 + 12, (22)

where A gives a measure of the anisotropy, with A < 1 and
A > 1 for prolate or oblate deformations, respectively. Then
Heiselberg [52] has obtained analytical expression for the col-
lective frequencies along the elongation axis or perpendicular
to the elongation axis. This collective axis are called below
axial or radial collective frequencies and are denoted by wax
and wy,q, respectively.

For prolate deformation with A < 1, the two frequencies

are given by
P
Wax 1
=1/3-=, 23
o V37T (23)

o V4
—nd — /2T, (24)
wo

while in the oblate limit A >> 1, we have

(7

Pax VT +1, (25)

wo
0 6 —2
Crad _ . (26)
wo '+1

Note that for A = 1 we recover results obtained for isotropic
trap [52,54]. We then see that a change in I will be reflected
by a change in the axial and radial collective frequencies. The
collective response of cold atoms with possible anisotropy for
the trapping potential has attracted much attention in the last
decades. The experimental axial and radial frequencies are
shown at or around unitarity for prolate shapes in Fig. 12. At

1.7
1.68

1.66 7

— 1.64
1.62

1.6

1.58

1.7

1.68
1.66
— 1.64
1.62

—(askr)

FIG. 11. Adiabatic index as a function of —(askz)~! (a) or as
a function of —(aykr) (b) obtained from the functional Eq. (1)
assuming 7, = 0 fm (blue long dashed line). For comparison, the
black short dashed and the black short dot-dashed lines correspond
to the Taylor expansion to first order in (a,kr) or to first order in
(askp)~", respectively. The red solid line corresponds to the neutron
matter case assuming r, = 2.716 fm. In both cases, a; = —18.9 fm.

unitarity (I' = 5/3), we expect to have why /(Awg) = /12/5 =~
1.549 and ! /wy = /10/3 ~ 1.826 that seems coherent
with the observations. In Fig. 12, we also display the results
of Egs. (24) and (23). using the adiabatic index obtained from
the functional Eq. (1) with r, = 0. We see that the estimated
collective frequencies are consistent with the observation in
cold atoms. We then investigate the possible effect of r, in the
strict unitary regime in Fig. 13. In this case, the I" that is used
in Egs. (24) and (23) is displayed in Fig. 10. We see a rather
weak dependence of the collective frequencies with r,.

We finally display in Fig. 14 the collective frequencies
obtained for confined neutron systems in an anisotropic trap.
As far as we know, the present work is the first attempt to de-
termine this particular quantity neutronic systems. Collective
frequencies obtained with the functional are compared with
the case of cold atoms and with the result of the empirical
Skyrme EDF with Sly5 sets of parameter. It is first noted
that collective frequencies are strongly dependent on the used
functional and therefore the dynamical collective frequencies
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FIG. 12. !, ,/wo (a) and w?, /(Lwp) (b) as function of —(askr)™"
obtained with the functional Eq. (1) with r, = 0 (blue dashed line).
The symbols are experimental data: triangles from Ref. [55], circles
from Ref. [56], and squares from Ref. [57]. (All data sets are taken
from Fig. 3 of Ref. [58]).

of trapped neutron is a stringent test of the functional used. We
finally would like to mention that the collective frequencies are
calculated here assuming that the local density approximation
is valid. However, the collective frequencies might be affected
by the introduction of gradients of the densities as it is
usually done in more empirical functional like Skyrme ones. In
addition, we predict rather large differences between neutron
matter and cold atoms that are due to effective range effects
as well as higher order channels like p wave when the density
increases.

VI. CRITICAL DISCUSSION ON THE ROLE OF PAIRING

In the present article, we focused our attention on the static
response of doubly degenerated Fermi liquid with anomalously
large s-wave scattering length. We have seen that assuming
that the effective mass is approximately equal to the bare mass
and neglecting possible effect of superfluidity, our functional
can describe reasonably the ground state thermodynamical
quantities close or at unitarity in cold atoms and can give
interesting insight for the static response of neutron matter.
The comparison is less favorable when performing the full
dynamical response. Using the same assumptions as for the

1.86

(a)

1548 ————
o 1 2 3 4

(rekr)
FIG. 13. o’

rad/@o (@) and w?f /(Awg) (b) as function of (r.kr)
obtained with the functional Eq. (1) at unitarity (a,;k7)~" = 0.

(@5

static response, we also calculated the dynamical response of
the system to a small oscillating external perturbation Ve (r,?)
with varying frequency w. The dynamical response function
x(q,w) then generalizes the static response [32,36] that is
obtained as the specific case w = 0.

One then defines the dynamical structure function S(gq,w)
through

1
8(g ) = ——Imlx(g,®)]. 27

While the static response function has not been directly
obtained in UG, its dynamical structure function has been
studied both experimentally and theoretically in Refs. [46,59].
The experimental structure function obtained in Ref. [59] is
compared to the response obtained with the functional Eq. (1)
in Fig. 15. The experimental response presents two separated
peaks. We obviously see that the dynamical response obtained
with our functional is able approximately to reproduce the
second peak but completely miss the collective mode at low
energy. This mode is indeed due to superfluidity leading to the
so-called Bogoliubov-Anderson mode, which seems difficult
to describe without explicitly using a quasiparticle picture.
As shown in Ref. [60], using the RPA approach with the
SLDA, accounting for superfluidity leads back to the proper
low energy collective modes that reproduces qualitatively the
observation. As shown above, many aspects can be properly
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FIG. 14. @ly/(Awy) (respectively, w? /wo) as a function of
—(askr) (a) (respectively, (b)) obtained in neutron matter using a;, =
—18.9 fm and r, = 2.716 fm (red solid line) in the functional Eq. (1),
while the blue long-dashed line corresponds to the result obtained
with r, = 0. For comparison, we also show the result of the Skyrme
Sly5 parameter sets (black filled circles) and the result obtained by
adding to the functional the leading order p-wave contribution (green
dot-dashed line).

0.4
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40

FIG. 15. Dynamical structure function at unitarity obtained from
the functional Eq. (1) (red solid line) compared to the experimental
results of Ref. [59] (blue triangles). ¢ = Fzzk,zr /2m is the Fermi
energy.

q/kr

FIG. 16. Static structure function obtained with the functional
(with r, = 0) (red solid line) as a function of g/kr compared to
the diffusion Monte Carlo result of Ref. [62] (blue circles). For
comparison, we also show the result obtained in Ref. [60] with the
SLDA (green dashed line).

reproduced in cold atoms without explicitly introducing super-
fluidity. However, the dynamical response clearly points out the
necessity in the near future to explicitly include the anomalous
density in the description.

One can also obtain the static structure function S(q),
defined through

S(q) = / dwS(q.0)

that has been obtained for UG in Ref. [61], where it is
compared to QMC results (see also Ref. [62]). We show
in Fig. 16 a comparison of the static structure factor obtain
with the functional with the Monte Carlo result of Ref. [62].
Not surprisingly, due to the missing peak at low energy,
S(g) is underestimated compared to the exact results. Our
conclusion, is that for specific aspects like the dynamical
response, it will be necessary to improve the functional by
allowing U (1) symmetry breaking. The same situation will also
happen for neutron matter at very low density. However, in the
neutron matter case, when the density increases pairing gap
exponentially decreases. In particular, at densities considered
in the DFMC results of Refs. [10,11], pairing is expected to
not affect the static response.

VII. CONCLUSION

In the present work, we make a detailed analysis of
thermodynamical ground-state properties of both cold atoms
and neutron matter starting from the new density functional
proposed in Refs. [5,12]. For cold atoms with large negative
s-wave scattering length and with negligible effective range
effects, thermodynamical quantities like the pressure, the
chemical potential, the compressibility, and zero sound are very
well reproduced. We further analyze the possible influence of
the effective range at and away from the unitary gas limit.
The inclusion of effective range is the first step toward the
proper description of neutron matter. The difference between
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ground-state thermodynamical properties in UG and neutron
matter are quantified.

The thermodynamical quantities, and more specifically the
compressibility, are connected to the static response of Fermi
liquids to an external constraint for which exact AFDMC exists
[10,11]. The exact static response is obtained using the new
functional. It is shown to be in much better agreement with
AFDMC result than the Skyrme type functional especially at
low density.

We finally consider the dynamical collective response in the
hydrodynamical regime. In the cold atom case, a reasonable
description of radial and axial collective frequency is obtained
assuming a polytropic equation of state. Following a similar
strategy, we estimate the collective frequencies of neutron

drops in anisotropic traps. Important differences are observed
between Skyrme empirical functional and the new functional
discussed here.
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