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In a recent article, Kwon et al. [Nature (London) 600, 64 (2021)] revealed nonuniversal dissipative
dynamics of quantum vortices in a fermionic superfluid. The enhancement of the dissipative process
is pronounced for the Bardeen-Cooper-Schrieffer interaction regime, and it was suggested that the
effect is due to the presence of quasiparticles localized inside the vortex core. We test this hypothesis
through numerical simulations with time-dependent density-functional theory: a fully microscopic
framework with fermionic degrees of freedom. The results of fully microscopic calculations expose
the impact of the vortex-bound states on dissipative dynamics in a fermionic superfluid. Their
contribution is too weak to explain the experimental measurements, and we identify that thermal
effects, giving rise to mutual friction between superfluid and the normal component, dominate the
observed dynamics.

Introduction.— Quantum simulators in the form of
ultracold atoms with fine-tuned interactions offer a ver-
satile platform for studying many-body phenomena in
quantum systems. In particular, an emergent phe-
nomenon of superfluidity is the subject of extensive stud-
ies. Presently, the effort has been shifted toward the
investigation of mechanisms that lead to energy dissipa-
tion, although the underlying system has formally van-
ishing viscosity coefficients. Recent experiments at LENS
(Florence, Italy) highlighted astonishing dissipative pro-
cesses during the scattering of quantum vortices [1]. In
this experiment, the relative distance change between
quantum vortices during the collision was used as a
probe that quantifies the collective energy losses. The
conclusions are unequivocal: the dissipation changes as
we change the nature of the underlying superfluid from
bosonic to fermionic and is significantly enhanced for the
latter case. Sensitivity of the superfluid dynamics with
respect to the regime has also been tested in measure-
ments of critical velocity [2–4] or behavior of an atomic
Josephson junction [5, 6].

Experiment [1] has been conducted with a fermionic
isotope of 6Li, cooled down to superfluid phase. To char-
acterize the interaction regime, it is convenient to in-
troduce the dimensionless quantity askF , where as is the
s-wave scattering length and kF = (3π2n)1/3 is the Fermi
wave vector corresponding to the density n. The Bose-
Einstein condensate (BEC) regime corresponds to posi-
tive and small values of askF → 0+, where bound states
(dimers) are created that behave effectively as bosons.
The amount of measured dissipation is relatively small
for the BEC regime, and the zero-temperature Gross-
Pitaevskii equation (GPE) is able to explain the measure-
ments [1] successfully. The GPE points to the emission of
phonons (sound) as the primary dissipation mechanism.
On the other side, when askF → 0−, fermions with op-
posite spins form quantum correlations in the form of
Cooper pairs. It corresponds to the Bardeen-Cooper-
Schrieffer (BCS) coupling regime. In this regime, a signif-
icant enhancement of the collective energy dissipation is

observed. It is speculated that an additional dissipation
mechanism activates in this regime, genuinely related to
the fermionic nature of the system. The enhanced dissi-
pation is also present for strongly interacting case, called
unitary Fermi gas (UFG), where askF → ±∞, however,
not as strong as in the BCS limit. This Letter aims to
provide microscopic insight into the dissipative processes
for fermionic systems with strong (UFG) and weak (BCS)
interactions.

In a pioneering work [7], a universal dissipation mech-
anism induced by the motion of the topological defects,
and present only in fermionic superfluids, was proposed.
The mechanism is due to the presence of the internal
structure of quantum vortices: in the Fermi system,
the vortices host localized Andreev states, implying that
their cores are filled with a gas of quasiparticles [8–13].
When they move with an acceleration, these Andreev
quasiparticles can be excited and eventually converted
into delocalized states. Occupation of the Andreev states
is affected, which in Ref. [7] is interpreted as an in-
crease in the vortex core’s effective temperature. The
internal structure of quantum vortices is not considered
in GPE-like approaches or phenomenological approaches
like the vortex filament model, and the fact that they
failed in explaining observations of [1], for UFG and BCS
regimes, directs to speculation that the mechanism as
proposed by Silaev can be responsible for the observed
discrepancy. The same mechanism is expected to be
the main source that differentiates energy dissipations
between 3He-B (fermionic) and 4He (bosonic) superflu-
ids [14, 15]. Its microscopic understanding is important
in the context of all types of Fermi superfluids [16–19]
and is still missing.

This work provides a large-scale simulation to study
the scattering of vortices, aiming to expose the mi-
croscopic origin of dissipation observed in the experi-
ment [1]. Our approach is based on time-dependent
density-functional theory (TDDFT). The theory utilizes
explicitly fermionic quasiparticles as degrees of freedom,
and thus effects due to Andreev states are naturally in-

ar
X

iv
:2

20
7.

00
87

0v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

6 
Ja

n 
20

23

https://orcid.org/0000-0002-9769-8702
https://orcid.org/0000-0003-3839-6090 
https://orcid.org/0000-0001-8769-5017
https://orcid.org/0000-0002-7726-5328


2

corporated. Nowadays, energy functionals for superfluid
Fermi gases have reached a high level of maturity, allow-
ing systematic and accurate studies of the systems that
facilitate comparison with experiments [20]. We study
the cases for which the TDDFT method has been exten-
sively validated: UFG regime (|askF | = ∞), where the
so-called superfluid local density approximation (SLDA)
functional proved to be accurate [21–32], and BCS regime
|askF | . 1, where the Bogoliubov–de Gennes (BdG)
functional is trustable. We first revisit the static prop-
erties of fermionic quantum vortices and identify energy
scales that are important for dynamical simulation.
Structure and typical scales of quantum vortex. —
The static variant of density-functional theory (DFT)

we apply here is formally equivalent to the mean-field
Bogoliubov–de Gennes equations

H(n, ν)

(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
(1)

for Bogoliubov amplitudes (un(r), vn(r))T that define
normal n and anomalous ν densities

n(r) = 2
∑
En>0

(
|un(r)|2f+

n + |vn(r)|2f−n
)
, (2a)

ν(r) =
∑
En>0

(f−n − f+
n )un(r)v∗n(r). (2b)

The Fermi-Dirac distribution, noted as f±n = [1 +
exp (±En/T )]−1, is included to model the temperature
T effects. We use the metric system, where m = ~ =
kB = 1. The Hamiltonian has generic form

H =

(
− 1

2∇2 + U(r)− µ ∆(r)
∆∗(r) 1

2∇2 − U(r) + µ

)
, (3)

where mean and pairing fields are computed as appro-
priate functional derivatives of the energy functional E ,
namely U = δE

δn and ∆ = − δE
δν∗ . Explicit forms of these

fields depend on the interaction regime. For the BCS
regime they are U (BCS) = 0 and ∆(BCS) = −gν with
g ∼ 4πas. With these definitions, the method becomes
identical with celebrated BCS theory when applied to a
uniform system. For UFG, we use a functional known
as SLDA [33], which gives U (UFG) = β(3π2n)2/3

2 − |∆|2
3γn2/3

and ∆(UFG) = − γ
n1/3 ν. This form of the fields assures

us that the theory is scale invariant. Coupling constants
β and γ are adjusted to ensure the correct energy value
E/N = 3

5ξ0εF with Bertsch parameter ξ0 ≈ 0.4 and en-
ergy gap ∆/εF ≈ 0.5, when used for the uniform system.
Here, εF = k2

F /2 stands for the Fermi energy. The total
particle number N is controlled by the chemical potential
µ. In the presence of the external trapping potential one
needs to redefine the mean field U(r) → U(r) + Vext(r).
The coupling constants that define the pairing field (g
and γ) need to be renormalized in order to remove for-
mal divergence of anomalous density as given by Eq. (2b).

It is done by introducing energy cutoff Ec at which the
sum is truncated

∑
En>0 →

∑
0<En<Ec

, see [20] for a
more detailed discussion.

The minigap energy Emg is a crucial quantity when
discussing fermionic vortices [11, 17, 34]. It is defined
as the energy of the lowest Andreev state. In BCS ap-
proximation, at T = 0, we have Emg ≈ |∆|2/2εF . This
formula works reasonably well in the entire BCS-UFG
range, taking that ∆/εF ≈ 8

e2 exp(−π/2|askF |) for the
BCS and ∆/εF ≈ 0.5 for the UFG regimes [20]. The
number of Andreev states (below the energy gap) scales
as NA ∼ |∆|/Emg, and clearly it increases exponentially
as we move toward the deep BCS limit, see also [35].
Thus, the vortices in the BCS regime host more matter
inside as compared to the UFG limit, compare vortex
profiles presented in Fig. 1(d). This naturally suggests
the increasing role of the vortex core structure on the
dynamical properties as we move from UFG to BCS in-
teraction regimes.

The experiment [1] was conducted for temperature
T/Tc ≈ 0.3–0.4, where Tc is the critical temperature of
the superfluid-normal phase transition. We have checked
sensitivity of the vortex solution with respect to the tem-
perature effects for UFG (|askF |−1 = 0) and for BCS
(|askF |−1 = 1) regimes. The results are presented in
Fig. 1. For the strongly interacting unitary gas, the
minigap energy Emg, the vortex core density nc, and
number of Andreev states NA are almost independent
of the temperature for T . 0.2Tc [36]. Above it, the
temperature dependence for the quantities is clearly vis-
ible. The BCS regime case exhibits different behaviors
of the static properties as compared to UFG. The mini-
gap energy change is observed already for temperatures
close to zero. The density at the center of the vortex core
reaches approximately the bulk density value, already at
T ' 0.3Tc. Clearly, for temperatures achieved in experi-
ment, the vortex solution in UFG is affected by thermal
effects, and in the case of the BCS regime, the thermal
impact becomes significant. These aspects suggest that
the zero-temperature formalism may fail to explain the
results of experiment [1], and the most likely observed
enhancement of the dissipation in BCS is of dual origin:
due to mutual friction with the normal component and
internal structure of quantum vortices. Dynamical calcu-
lations are needed to specify relative importance of these
two.

It is interesting to note that the matter density inside
the vortex core increases with temperature, see Fig. 1(b)
and [37]. It allows one to use the core density as a probe
that measures the vortex’s (local) temperature. Suppose
the mechanism as proposed by Silaev [7] is in action. In
that case, we expect to see an increase in the core density
after the vortex collision; according to the interpretation,
the dissipative process heats up the vortex.
Propagation and collision of vortices. — The vor-

tex dynamics is studied by means of TDDFT formal-
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FIG. 1. (a) Minigap energy and (b) density at the center of the vortex core nc as a function of the dimensionless temperature
of single vortex at unitarity (red filled circles) and in BCS regime (blue open squares). For convenience, the quantities are
displayed according to their values obtained at zero temperature. In (c), we show temperature evolution of the number of
Andreev states (En ≤ 0.9|∆|) residing in the vortex. Vortex density profiles as a function of the distance from the core in UFG
(red) and BCS (blue) at T = 0 (solid line), T = 0.3Tc (dashed line), and T = 0.5Tc (dotted line) are shown in (d).

ism. It is obtained from the static variant by replacing
un(r) → un(r, t), and similarly for the vn component,
and converting Eq. (1) to time-dependent form by ap-
plying En → i∂/∂t. It was already emphasized that the
impact of temperature effects may be significant; thus
time-dependent calculations should take these effects into
account. While the DFT formalism can be rigorously ex-
tended to finite temperatures [38, 39], there is no such
extension to the time-dependent problems. The simplest
way is to assume that densities (2) acquire time depen-
dence only through {un(r, t), vn(r, t)}, while the Fermi-
Dirac distribution function is kept to be frozen. This
procedure is justified if the system stays close to the
equilibrium all time during the dynamics, otherwise it
constitutes an uncontrolled approximation. A more re-
fined approach would be to allow the distribution f±n to
evolve in time as well, for example, by coupling theory
to the Boltzmann equation as it was done in the case
of Bose system within the Zaremba-Nikuni-Griffin ap-
proach [40]. Practical realization of this concept for the
Fermi system has not been demonstrated. An alterna-
tive approach of incorporating fluctuations and dissipa-
tion within TDDFT was proposed in [41]. Contrary to
the mentioned extensions, the approach we applied does
not introduce additional (phenomenological) parameters
to the theory, which eventually one should treat as a fit-
ting parameter.

We consider head-on collisions of vortex dipoles: two
vortices of opposite circulation that move parallel to each
other, assuming that the intervortex distance is bigger
than a threshold value for the pair annihilation. The
calculations are executed by solving the time-dependent
equations on a spatial lattice of size 100×100×16, where
in the z direction we assume that the system is uniform.
The lattice spacing was set to satisfy ξ/dx ≈ 2.0 in BCS
and ξ/dx ≈ 1.6 in UFG regimes, where ξ = kF /π∆

is the BCS coherence length, which assures reasonable
representation of the Andreev states [30]. The system
is trapped in a cylindrical external potential, similar to
the experimental setup [1]. The initial solution with
four quantum vortices is obtained through the imprint-
ing technique. The number of particles N =

∫
n(r) d3r

is adjusted in such way to get kF ' 1.6 and kF ' 0.8
for BCS and UFG regimes respectively, where kF is de-
fined through density in the trap center. The numerical
setup is presented in Fig. 2(a); see also the Supplemental
Material [42] for details related to imprinting of vortices.

In Figs. 2(d) and 2(e), we present numerically obtained
change in the intervortex distance df/di due to the colli-
sions. In the case of UFG, we find that at T = 0 collisions
are essentially elastic (df/di ' 1), up to the annihilation
threshold [Fig. 2(d)]. We observe a decrease of the in-
tervortex distance df only if we increase the temperature
up to T/Tc & 0.3, which matches the temperature re-
quired to induce changes in the vortex structure, see also
Fig. 1. On the other hand, in the BCS regime, we find
that already at T = 0 dissipative dynamics emerge for
cases close to the annihilation threshold [Fig. 2(e)]. As
expected, the dissipation as measured by the ratio df/di
is further enhanced for the finite-temperature runs. For
temperatures T/Tc & 0.3, we find that the suppression
of df/di is mainly dominated by the thermal effects.

To clarify the origin of the dissipative dynamics in the
BCS regime at T = 0, we have analyzed the vortex struc-
ture evolution during the process. In Fig. 2(f), we present
matter density in the vortex as a function of time. We
see that, for cases where df/di < 1, the density increases
due to the collision. It demonstrates that the process be-
comes sensitive to the vortex core structure. To visualize
the process explicitly, in Figs. 2(b) and 2(c), we provide
the evolution of density arising only from the Andreev
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FIG. 2. (a) Initial configuration (BCS regime with askF = −1) showing distribution of the order parameter ∆. During the
dynamics, vortices are moving along blue lines; see examples movies in Supplemental Material [42]. Distance between vortices
before and after collision is indicated by di and df , respectively. (b), (c) Spatial distribution of density arising from the Andreev
states only nA(r), before (t � 0) and after collision (t � 0). Boxes are divided into half, corresponding to different initial
distances of vortices in the BCS regime. (d), (e) Relative decrease in distance between vortices in the case of two dipoles colliding
head-on in UFG and BCS regimes at various temperatures. Error bars account for finite resolution of the computational lattice.
For reference, we also provide experimental results of LENS [1]. (f) Core density, normalized to the bulk density, as a function
of time for zero-temperature BCS runs. Time t = 0 indicates collision moment. Inset: flow energy Ej as a function of time,
normalized to its initial value. Each energy line matches its color. Lines marked by numbers 1–3 correspond to points with the
same labels as in (e).

states,

nA(r) = 2
∑

0<En<0.85∆

(
|un(r)|2f+

n + |vn(r)|2f−n
)
. (4)

Before the collision, the density contracted from the in-
gap states is entirely localized to the region where the
topological defects are present, Fig. 2(b). During the
collision, their distribution is affected and some of these
states become even delocalized, visible as leakage of den-
sity nA from the cores. Effectively, the vortices emerge as
being heated up after the collision. The strength of this
process is related to di, which in turn is related to the
acceleration of moving vortices: smaller di generates a
trajectory of higher curvature and thus higher centripetal
acceleration. The presence of the dissipative process is
reflected also in a drop of the flow energy Ej =

∫
j2

2n d
3r,

shown in inset of Fig. 2(f), with current computed as

j(r) = 2
∑
En>0

{
Im[u∗n(r)∇un(r)]f+

n −Im[v∗n(r)∇vn(r)]f−n

}
.

(5)
The Ej energy contains contributions from incom-
pressible E(i)

j (vortices) and compressible E(c)
j (sound)

modes [43, 44], and conversion E
(i)
j → E

(c)
j is also de-

tected during the collision. The observed suppression
of df/di < 1 at zero temperature is mainly due to ef-
fects related to the core structure. They share similar-
ities with the mechanism predicted by Silaev [7], which
was derived based on quasi-classical arguments (vortex
is approximated as a container that holds gas of quasi-
particles). Here, we demonstrate importance of the vor-
tex core structure on the dynamics from the perspec-
tive of the microscopic description, which extends beyond
capabilities of the Gross-Pitaevskii approach, which is
the only one that was used to study vortex collisions so
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far [1, 45–47].
Comparison with experiment and conclusions. — It

is instructive to compare our results with experimental
data of the LENS group. Although the numerical setup
was inspired by the experimental one, our DFT simula-
tions are done for a much smaller system due to high
numerical complexity. Also, in calculations we neglect
trapping effects along the z direction. Thus, the di-
rect quantitative comparison is limited. Still, we may
derive valuable conclusions by performing a qualitative
comparison. In general, the experiment admits more dis-
sipative dynamics as observed in the simulations. As
already expected from the static considerations, the tem-
perature effects significantly affect the observed dynam-
ics, see Fig. 2. This points to the crucial role of mu-
tual friction with the normal component. The dissipa-
tive mechanism via excitations of the vortex core, while
present, emerges to be of secondary importance. Includ-
ing the temperature effects bring us closer to the LENS
data. However, even for temperature T ≈ 0.3−0.4Tc (as
reported in the experimental paper), simulations admit
weaker dissipation. Note that our BCS runs are done
for askF = −1, while in the experiment askF = −3.2,
and thus simulations should overestimate the dissipative
effects. The framework applied here currently repre-
sents the most complete microscopic description of the
fermionic dynamics, without introducing any adjustable
(phenomenological) parameters. Although the mecha-
nism described by Silaev operates, the lack of two-body
collisions is expected to be responsible for effective sup-
pression of dissipation in the theory and deviation from
experiment. In light of these results, we envision that ac-
counting for dissipation and fluctuations by the TDDFT
in the future will be inevitable, similar to the case of
GPE-like approaches where a certain degree of dissipa-
tion, introduced by hand, is presently a common proce-
dure [48]. Some works in this direction have already been
done [41], however, presented ideas need to be validated
by experiments. Systematically derived data from vortex
collider experiments as a function of temperature and the
interaction strength may provide a valuable benchmark
for such refinement [49].

The calculations in this Letter were executed by means
of the W-SLDA Toolkit [50]. Reproducibility packs are
provided in the Supplemental Material [42]. They pro-
vide complete information needed to reproduce results
presented in this Letter.
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Supplemental Material for:
“Dissipative Dynamics of Quantum Vortices in

Fermionic Superfluid”

In this Supplemental Material we provide additional de-
tails concerning the processes of vortex imprinting, tracking
methods and uncertainty estimation.

PHASE IMPRINTING

The method to generate vortices used in our work relies
on the phase properties of the superfluid. The order pa-
rameter ∆, by virtue of being a two-dimensional complex
quantity, can be written as ∆(r) = |∆(r)|eiφ(r), where
φ(r) is its phase. We use 2d geometry and r = (x, y). In
case of a single vortex, located at position ri, the phase
rotates by 2π around the point defined by |∆(ri)| = 0.
The phase is given by

φi(x, y) = arctan

(
x− xi
y − yi

)
. (6)

We consider the setup consisting of vortex dipole, which
are vortex-antivortex pairs. The phase patterns are as-
sumed to be a superposition of phase patterns of individ-
ual vortices:

φL(x, y) = φ1(x, y)− φ2(x, y), (7a)
φR(x, y) = φ3(x, y)− φ4(x, y), (7b)

where φL(R)(x, y) is the phase field characterizing the
left (right) dipole. The generic structure of the order

parameter reads:

∆(x, y) = |∆(x, y)|eiφL(x,y)eiφR(x,y). (8)

In numerical realization, when searching for static so-
lution, we impose in each iteration the desired phase
pattern, while the absolute value of the order parame-
ter is adjusted self-consistently by the computation pro-
cess. More details can be found on the WSLDA Toolkit
site. The imprinted phase patterns correspond to sta-
tionary vortices. Once we start to evolve the solution,
the vortices start to move due to their mutual interac-
tion. The sign of each vortex has been chosen in order
to have dipoles that move towards the center of the trap.
The vortices acquire kinetic energy at the expense of the
interaction energy. It is visible as shrinking of the dipole
size as they start to accelerate at the beginning of sim-
ulation, see also Fig. 3. The initial acceleration takes
less than 50/εF , which is negligible compared to the to-
tal simulation time t ∼ 1000/εF . The initial part of the
trajectory, affected by spurious effect related to imperfec-
tion if the imprinting procedure is rejected from further
analysis.

UNCERTAINTY ESTIMATION OF RELATIVE
DISTANCE BETWEEN VORTICES

To accurately measure the position and the trajectory
of each vortex, we use the vortex tracking method as
described in Appendix C of Ref. [23]. It is a modified
version of algorithm presented in [55], originally con-

FIG. 3. Example trajectory of the top left vortex (positive
winding number). Inset: local zoom to show fluctuation of
the vortex’ trajectory. Greyed out areas have nonzero accel-
eration, and are excluded from the sample to obtain di.

http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031119-050821
http://dx.doi.org/10.48550/ARXIV.2205.04065
http://dx.doi.org/10.48550/ARXIV.2205.04065
https://wslda.fizyka.pw.edu.pl/
https://wslda.fizyka.pw.edu.pl/
https://wslda.fizyka.pw.edu.pl/
http://dx.doi.org/10.1126/science.1214987
http://dx.doi.org/ 10.1103/PhysRevLett.101.090402
http://dx.doi.org/ 10.1103/PhysRevLett.101.090402
http://dx.doi.org/ 10.1103/PhysRevLett.107.145304
http://dx.doi.org/10.1103/PhysRevLett.124.090604
http://dx.doi.org/10.1088/1751-8113/49/41/415502
http://dx.doi.org/10.1088/1751-8113/49/41/415502
http://dx.doi.org/10.1088/1751-8113/49/41/415502
https://gitlab.fizyka.pw.edu.pl/wtools/wslda/-/wikis/home
https://gitlab.fizyka.pw.edu.pl/wtools/wslda/-/wikis/home


8

FIG. 4. Andreev states in the BCS regime as a function of
angular momentum quantum number m. Symmetry of the
spectrum with respect to Fermi surface (En = 0) is due to
particle-hole symmetry. The plot is based on data published
in paper [11].

structed to track vortex lines in superfluids described by
the Gross-Pitaevskii equation. The method localizes the
vortex core with sublattice resolution, estimated to be
about 0.1 of the lattice spacing.

Example of extracted vortex trajectory by the track-
ing algorithm is presented in Fig. 3. When looking closely
at the vortex trajectory before (see inset) and after col-
lision they are not perfectly straight lines, but exhibit
some small oscillations. In order to estimate an initial
distance di and a final distance df , we focus on time in-
tervals where vortices move with constant velocity. In
practice, this means excluding the time window where
the initial acceleration is nonzero (due to the imprint-

ing procedure, see above), and the window around the
collision at time t = t0, where the centripetal accelera-
tion becomes nonzero and the trajectories are bent, as
shown in Fig. 3. The size of the fluctuations define
uncertainty when computing relative distance di/f from
distance between the two branches, and the uncertainty
propagation formula is used when computing the ratio
df/di computing.

ANDREEV STATES TRACKING

The Andreev states are defined as states with |En| <
∆, where ∆ indicates bulk value of the order parame-
ter. They are discrete and localized states, while states
above the gap are delocalized with continuum spectrum.
However, in numerical realization when we discretize the
problem on the lattice, the transition between localized
and delocalized states is not sharp. In particular, due to
inhomogeneities of the system, some of the states belong-
ing to continuum have energies already slightly below the
gap. Based on analysis of the spectra En we find that
(empirical) definition |En| . 0.85∆ separates the An-
dreev states from the continuum states with reasonable
accuracy. As an example, in Fig. 4, we show spectra
of states for a single vortex in the BCS (askF = 0.84)
regime, as a function of angular momentum quantum
number m. The Andreev band (also called chiral band)
is clearly visible, and well separated from other states
when using the empirical definition. This definition is
used when computing density arising only from the An-
dreev states (see Eq. (4) in the main text).
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