Density Functional Theory for Fermi systems with large s-wave scattering length:

application to nuclear and atomic physics

Antoine Boulet Institut de Physique Nucléaire d'Orsay (IPN Orsay) antoine.boulet@ipno.in2p3.fr

PhD defense September 19th, 2019 – Orsay

Contents

Introduction

- **⊙** Nuclear many-body problem
- ${\ensuremath{\overline{\textbf{O}}}}$ Context and motivations
- **⊙** Hints towards non-empirical DFT
- 2 A DFT for cold atoms and neutron matter: semi-empirical approach
 - Thermodynamics of ultracold fermionic system
 - Effective range effect and low-density neutron matter
 - Application to the static linear response

3 Resummation technique for the energy

- ${\ensuremath{\bigodot}}$ Ladder approximation
- ${\ensuremath{ igodol{O}}}$ Phase-space approximation
- 4 Resummation technique for the self-energy
 - ${\ensuremath{ \odot}}$ Test particle methods
 - Partial phase-space approximation and quasi-particle properties
- 5 Conclusion, outlooks and perspectives

the many-body problem

5

complexity

complexity vs simplicity

complexity vs simplicity

complexity vs simplicity

many-body problem

the

of

complexity

complexity vs simplicity

Nuclear ab initio methods

Starting point: $\chi {\rm EFT}$

 \rightarrow low-energy constants

	2N Force	3N Force	4N Force	5N Force
LO $(Q/\Lambda_{\chi})^0$	XH			
$\frac{\mathbf{NLO}}{(Q/\Lambda_\chi)^2}$	XIAM			
${f NNLO}\ (Q/\Lambda_\chi)^3$	kik]	+++ HX Ж		
${f N^3 LO} {(Q/\Lambda_\chi)^4}$	XMX MA	+> 4+ X:=>+4	t Mt	
${f N}^4 {f LO} \ (Q/\Lambda_\chi)^5$		+> <	t†X	
${f N^5 LO} {(Q/\Lambda_\chi)^6}$	Xkolki koloi	╡┽╢┿┥ ╞╞┥ _{┺╼}		t₩H

(Epelbaum, Machleidt, van Kolck, ...)

Nuclear ab initio methods

(Epelbaum, Machleidt, van Kolck, ...)

X Non-explicit in terms of the LECs/density

Standard nuclear DFT

Starting point: effective interactions (Skyrme,Gogny,...)

$$E = \int \mathcal{E}[\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \tau(\mathbf{r}), \dots] d^3r$$

 \sim 10 parameters to be adjusted

- ✓ Correlations Beyond Mean Field
- ✓ Static, dynamic, thermo, ...
- ✓ Accurate and simple to implement

Nuclear systems \simeq independent nucleons in an external one-body field

Standard nuclear DFT

Starting point: effective interactions (Skyrme,Gogny,...)

$$E = \int \mathcal{E}[\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \tau(\mathbf{r}), \dots] d^3r$$

 \sim 10 parameters to be adjusted

- $\checkmark\,$ Correlations Beyond Mean Field
- ✓ Static, dynamic, thermo, ...
- ✓ Accurate and simple to implement
- X Relative lack of predictive power
- Link to underlying bare Hamiltonian (LECs) is lost

Nuclear systems \simeq independent nucleons in an external one-body field

Standard nuclear DFT

Starting point: effective interactions (Skyrme,Gogny,...)

$$E = \int \mathcal{E}[\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \tau(\mathbf{r}), \dots] d^3r$$

 \sim 10 parameters to be adjusted

- $\checkmark\,$ Correlations Beyond Mean Field
- ✓ Static, dynamic, thermo, ...
- ✓ Accurate and simple to implement
- X Relative lack of predictive power
- Link to underlying bare Hamiltonian (LECs) is lost

- How does the simplicity of nuclei emerge from the complexity of the nuclear interaction?
- Can recent progress in EFT/ab initio help to better constrain the nuclear DFT and render it less empirical?

Ab initio methods vs DFT picture

Ab initio methods vs DFT picture

Ab initio methods vs DFT picture

- How does the simplicity of nuclei emerge from the complexity of the nuclear interaction?
- Can recent progresses in EFT/*ab initio* help to better constraint the EDF and render it less empirical?
- Can we directly connect the DFT parameters to the bare interaction low energy constants (LECs)?

$$\langle \boldsymbol{k} | V_{\neq EFT} | \boldsymbol{k'} \rangle = C_0 + \frac{C_2}{2} \left[\boldsymbol{k}^2 + \boldsymbol{k'}^2 \right] + \cdots$$
$$C_0 = \frac{4\pi}{m} a_s \quad C_2 = \frac{2\pi}{m} a_s^2 r_s$$

[Steele & Furnstahl, NPA762 (2000)] [Beane et al., nucl-th/0008064 (2000)] [Hammer & Furnstahl, NPA678 (2000)]

$$\langle \mathbf{k} | V_{\text{\#}EFT} | \mathbf{k'} \rangle = C_0 + \frac{C_2}{2} \left[\mathbf{k}^2 + \mathbf{k'}^2 \right] + \cdots$$
$$C_0 = \frac{4\pi}{m} a_s \quad C_2 = \frac{2\pi}{m} a_s^2 r_s$$

[Steele & Furnstahl, NPA762 (2000)] [Beane et al., nucl-th/0008064 (2000)] [Hammer & Furnstahl, NPA678 (2000)]

UV divergence properly treated [Kaplan, Savage, Wise, NPB534 (1998)]

Lee-Yang formula
$$|a_s k_F| \ll 1$$

 $E = E_{FG} + E^{(1)} + E^{(2)} + \cdots$
 $= E_{FG} \Big[1 + \frac{10}{9\pi} (a_s k_F) + \frac{4}{21\pi^2} (11 - 2\ln 2) (a_s k_F)^2 + \cdots \Big]$

$$E_{FG} = 3k_F^2 \rho / 10m \mid \rho = k_F^3 / 3\pi^2$$

$$\langle \mathbf{k} | V_{\# EFT} | \mathbf{k}' \rangle = C_{0} + \frac{C_{2}}{2} \left[\mathbf{k}^{2} + \mathbf{k}'^{2} \right] + \cdots$$

$$\begin{bmatrix} \text{Steele & Furnstahl, NPA762 (200)} \\ \text{[Beane et al., nucl-th/0008064 (2000)]} \\ \text{[Beane et al., nucl-th/0008064 (2000)]} \\ \text{[Hammer & Furnstahl, NPA678 (2000)]} \\ \text{[Hammer & Furnstahl, NP$$

 $E_{FG} = 3k_F^2 \rho/10m ~|~ \rho = k_F^3/3\pi^2$

$$\langle \mathbf{k} | V_{\# EFT} | \mathbf{k}' \rangle = C_0 + \frac{C_2}{2} \left[\mathbf{k}^2 + \mathbf{k'}^2 \right] + \cdots$$
[Steele & Furnstahl, NPA762 (2000)]
[Beane et al., nucl-th/0008064 (2000)]
[Hammer & Furnstahl, NPA763 (2000)]
[Hamm

 $E_{FG} = 3k_F^2 \rho / 10m \mid \rho = k_F^3 / 3\pi^2$

$$\langle \mathbf{k} | V_{\# EFT} | \mathbf{k}' \rangle = C_0 + \frac{C_2}{2} \left[\mathbf{k}^2 + \mathbf{k}'^2 \right] + \cdots$$

$$\begin{bmatrix} \text{Steele & Furnstahl, NPA762 (2000)} \\ \text{Beane et al., nucl-th/0008064 (2000)} \\ \text{Beane et al., nucl-th/0008064 (2000)} \\ \text{Hammer & Furnstahl, NPA678 (2000)} \\ \text{Hammer &$$

$$\frac{E}{E_{FG}} = 1 + (a_s k_F) \gamma_1 + (a_s k_F)^2 \gamma_2 + \cdots$$

Unitary limit as a guidance

$$\frac{E}{E_{FG}} \underset{|a_s| \to \infty}{\longrightarrow} \xi_0 = 0.37 \qquad (\text{accepted value})$$

- $oldsymbol{O}$ non-empirical $ightarrow f(a_s)$
- \odot DFT $\rightarrow f(\rho)$ or $f(k_F)$
- **⊙** finite limit at unitarity

$$\frac{E}{E_{FG}} = 1 + (a_s k_F) \gamma_1 + (a_s k_F)^2 \gamma_2 + \cdots$$

Unitary limit as a guidance

Minimal Padé approximation

$$\frac{E}{E_{FG}} = 1 + \frac{(a_s k_F)\gamma_1}{1 - (a_s k_F)\gamma_2/\gamma_1}$$

✓ valid up to second order in $(a_s k_F)$

X incorrect Bertsch parameter ($\simeq 0.32$)

$$\frac{E}{E_{FG}} = 1 + (a_s k_F) \gamma_1 + (a_s k_F) \gamma_2 + \cdots$$

Unitary limit as a guidance

Minimal Padé approximation

$$\frac{E}{E_{FG}} = 1 + \frac{(a_s k_F)\gamma_1}{1 - (a_s k_F)\gamma_2/\gamma_1}$$

✓ valid up to second order in $(a_s k_F)$

X incorrect Bertsch parameter ($\simeq 0.32$)

Padé approximation + constraint

$$\frac{E}{E_{FG}} = 1 + \frac{(a_s k_F) \gamma_1}{1 - (1 - \xi_0)^{-1} (a_s k_F) \gamma_1}$$

× miss of the second order in $(a_s k_F)$

✓ exact Bertsch parameter

[Lacroix, PRA94 (2016)]

$$\frac{E}{E_{FG}} = 1 + (a_s k_F) \gamma_1 + (a_s k_F)^2 [\gamma_2 + (r_s k_F) \nu_1] + \cdots$$
[Fetter & Walecka book]

$$\frac{E}{E_{FG}} = 1 + (a_s k_F) \gamma_1 + (a_s k_F)^2 [\gamma_2 + (r_s k_F) \nu_1] + \cdots$$
[Fetter & Walecka book]

Unitary limit as a guidance

$$\frac{E}{E_{FG}} \xrightarrow[|a_s| \to \infty]{} \xi_0 + (r_s k_F) \eta_e + (r_s k_F)^2 \delta_e + \cdots$$
[Forbes et al., PRA86 (2012)]

$r_s \neq 0$

Low density limit as a guidance

$$\frac{E}{E_{FG}} = 1 + (a_s k_F) \gamma_1 + (a_s k_F)^2 [\gamma_2 + (r_s k_F) \nu_1] + \cdots$$
[Fetter & Walecka book]

Unitary limit as a guidance

$$\frac{E}{E_{FG}} \xrightarrow[|a_s| \to \infty]{} \xi_0 + (r_s k_F) \eta_e + (r_s k_F)^2 \delta_e + \cdots$$
[Forbes et al., PRA86 (2012)]

Padé approximation + constraint

[Lacroix, AB, et al., PRC 95 (2017)]

$$\frac{E}{E_{FG}} = 1 + \underbrace{\frac{(a_s k_F)\gamma_1}{1 - (1 - \xi_0)^{-1}(a_s k_F)\gamma_1}}_{\substack{\text{zero range part} \\ \rightarrow 2 \text{ parameters } \gamma_1, \xi_0}} + \underbrace{\frac{(a_s k_F)^2 (r_s k_F)\nu_1 \times [1 - (a_s k_F)\sqrt{\nu_1/\eta_e}]^{-1}}{1 - (a_s k_F)\sqrt{\nu_1/\eta_e} + (a_s k_F)(r_s k_F)\delta_e/\eta_e}}_{effective range part \rightarrow 3 \text{ parameters } \nu_1, \eta_e, \delta_e}}$$

Equation of states of dilute neutron matter

Importance of unitarity \rightarrow simplicity?

[Lacroix, AB, et al., PRC 95 (2017)]

Thermodynamics of ultracold atoms

Theories

- [Bulgac et al., PRA78 (2008)]
- □ [Haussmann et al., PRA75 (2007)]
- △ [Hu et al., Europhys. Lett. 74 (2006)]

Experiments

- [Navon et al., Science 328 (2010)]
- [Horikoshi et al., PRX7 (2017)]

+ systematic study of effective range effect $(r_s \neq 0)$

[AB, Lacroix, PRC97 (2018)]

Linear response theory for infinite matter

$$V_{ext} = \sum_{j} \phi(\boldsymbol{q}, \omega) e^{i \boldsymbol{q} \cdot \boldsymbol{r}_{j} - i \omega t} \quad \longmapsto \quad \delta \rho = -\chi(\boldsymbol{q}, \omega) \phi(\boldsymbol{q}, \omega)$$

Static response function

$$\chi(q) = \lim_{\omega \to 0} \chi(q, \omega) \qquad (\text{time indep.} V_{ext})$$

Static response of neutron matter

Ab-initio calculation

close to the response of the Free Gas

AFDMC: [Buraczynski, Gezerlis, PRC95 (2017)]

Static response of neutron matter

Ab-initio calculation

Static response of neutron matter

Ab-initio calculation

 \mapsto Motivate the re-analysis using the new non-empirical functional

Linear response in cold atoms

Static response of Unitary Gas $|a_s|
ightarrow \infty$ and $r_s = 0$

Superfluid Local Density Approximation (SLDA) \rightarrow 3 parameters

[AB, Lacroix, PRC97 (2018)] SLDA: [Forbes & Sharma, PRA90 (2014)]

Linear response of neutron matter: effective range effect

functional: $E = E(a_s k_F, r_s k_F)$

✓ Better than standard empirical DFT

Static response of neutron matter from the non-empirical DFT

• No effective mass: $m^* = m$

AFDMC: [Buraczynski, Gezerlis, PRC95 (2017)] [AB, Lacroix, PRC97 (2018)]

Linear response of neutron matter: effective range effect

functional: $E = E(a_s k_F, r_s k_F)$

 $\checkmark\,$ Better than standard empirical DFT

Static response of neutron matter from the non-empirical DFT

- No effective mass: $m^* = m$
- Adding the leading order of the *p*-wave into the functional, i.e.: $E \rightarrow E + \gamma_p (a_p k_E)^3 E_{EG}$

AFDMC match Free Gas response =

compensation effect of many contributions? AFDMC: [Buraczynski, Gezerlis, PRC95 (2017)] [AB, Lacroix, PRC97 (2018)]

Summary

\odot New non-empirical DFT linked directly to the LECs (a_s, r_s)

- ✓ importance of unitary limit
- ✓ large effective range effect
- $\sim\,$ semi-empirical approach

⊙ Applications: thermodynamics and linear response

- ✓ very promising approach
- **X** incomplete description \rightarrow quasi-particle properties

Second part of the thesis

- justify the functionals obtained "intuitively" starting from a more rigorous non-perturbative many-body theory
- 2 extend the study to the self-energy to obtain the quasi-particle properties

Basics of diagrammatic framework at zero temperature

$$E = E_{FG} + E^{(1)} + E^{(2)} + \cdots$$

[Fetter & Walecka book]

complexity

 $\frac{G(\omega, \mathbf{k})}{\omega - e_k + i0^-} = \frac{n_k}{\omega - e_k + i0^-} + \frac{1 - n_k}{\omega - e_k + i0^+} \qquad \qquad n_k = \Theta(k_F - k): \text{ occupation numbers} \\ e_k = k^2/2m: \text{ single particle energy (FG)} \\ c_k | V_{EFT} | \mathbf{k}' \rangle = C_0 = 4\pi a_s/m$

Contributing energy diagrams

$$E^{(1)} = \infty \rightarrow (a_{s}k_{F}) \rightarrow Hartree - Fock$$

$$E^{(2)} = \bigoplus \rightarrow (a_{s}k_{F})^{2} \rightarrow Lee - Yang$$

$$E^{(3)} = \bigoplus + \bigoplus$$

$$E^{(4)} = \bigoplus + \bigoplus + \bigoplus + \bigoplus + \bigoplus + \bigoplus$$

Basics of diagrammatic framework at zero temperature

 $\frac{G(\omega,k)}{\Box} = \frac{n_k}{\omega - e_k + i0^-} + \frac{1 - n_k}{\omega - e_k + i0^+}$

$$E = E_{FG} + E^{(1)} + E^{(2)} + \cdots$$

 $\langle \mathbf{k} | V_{EFT} | \mathbf{k}' \rangle$ $= C_0 = 4\pi a_s/m$

[Fetter & Walecka book]

 $n_k = \Theta(k_F - k)$: occupation numbers $e_k = k^2/2m$: single particle energy (FG)

Ladder approximation for the energy

$$E_{int} = \sum_{n=1}^{\infty} \bigotimes = \frac{80E_{FG}}{\pi k_F^5} \int_0^{k_F} s^2 ds \int_0^{\sqrt{k_F^2 - s^2}} t dt \ \operatorname{atan} \frac{(a_s k_F)\pi I_*(s, t)}{\pi - (a_s k_F)R(s, t)}$$
$$E_{int}^{pp} = \sum_{n=1}^{\infty} \longleftrightarrow = \frac{80E_{FG}}{\pi k_F^5} \int_0^{k_F} s^2 ds \int_0^{\sqrt{k_F^2 - s^2}} t dt \ \frac{(a_s k_F)\pi I_*(s, t)}{\pi - (a_s k_F)F(s, t)}$$

[Kaiser, NPA860 (2011)] (no pairing, no self-consistency)

$$F(s,t) = 1 + \frac{s}{k_F} - \frac{t}{k_F} \ln \left| \frac{k_F + s + t}{k_F + s - t} \right| + \frac{k_F^2 - s^2 - t^2}{2sk_F} \ln \left| \frac{(k_F + s)^2 - t^2}{k_F - s^2 - t^2} \right|$$

$$R(s,t) = F(s,t) + F(-s,t)$$

$$I_*(s,t) = \begin{cases} t/k_F & \text{for } 0 \le t < k_F - s \\ (k_F^2 - s^2 - t^2)/2sk_F & \text{for } k_F - s \le t < \sqrt{k_F^2 - s^2} \end{cases}$$

Ladder approximation for the energy

$$E_{int} = \sum_{n=1}^{\infty} \left\langle \sum = \frac{80E_{FG}}{\pi k_F^5} \int_0^{k_F} s^2 ds \int_0^{\sqrt{k_F^2 - s^2}} t dt \ \operatorname{atan} \frac{(a_s k_F) \pi l_*(s, t)}{\pi - (a_s k_F) R(s, t)} \right|$$
$$E_{int}^{pp} = \sum_{n=1}^{\infty} \left\langle \sum = \frac{80E_{FG}}{\pi k_F^5} \int_0^{k_F} s^2 ds \int_0^{\sqrt{k_F^2 - s^2}} t dt \ \frac{(a_s k_F) \pi l_*(s, t)}{\pi - (a_s k_F) F(s, t)} \right\rangle$$

[Kaiser, NPA860 (2011)] (no pairing, no self-consistency)

- ✓ Contain terms to all order in $(a_s k_F)$ in a compact form
- ✓ Expansion in $(a_s k_F)$ → Lee Yang formula
- ✓ Finite limit at unitarity $(|a_s| \to \infty)$
- **X** Implicit function of $\rho = k_F^3/3\pi^2$ (goal: explicit function)

Ladder approximation for the energy

Phase-space Approximation

$$\underbrace{E_{pp}}_{FG} = 1 + \frac{80}{\pi k_F^5} \int s^2 ds \int t dt \frac{(a_s k_F) \pi I(s, t)}{1 - (a_s k_F/\pi) F(s, t)} \underset{|a_s k_F| \to \infty}{\longrightarrow} 0.24$$

Phase-space Approximation of pp ladder resummation

$$\frac{E}{E_{FG}} = 1 + \frac{10}{9\pi} \frac{(a_s k_F)}{1 - (a_s k_F/\pi) \langle F \rangle} \xrightarrow[|a_s k_F| \to \infty]{} 0.32$$

[Heiselberg, PRA63 (2001)] [Schäfer et al., NPA762 (2005)] [Haussmann et al., PRA75 (2007)]

- ✓ Match the Lee Yang expansion at second order $\langle F \rangle = \frac{6}{35}(11 - 2 \ln 2)$
- ~ More predictive near unitarity $\varepsilon_0 \simeq 0.37$ (accepted value)

Adjust eventually $\langle F \rangle$ on unitary limit

- ✓ Exact at unitarity $|a_s| \to \infty$
- ✗ Lee − Yang expansion

Phase-space Approximation

$$\underbrace{\frac{E}{E_{FG}} = 1 + \frac{80}{\pi k_F^5} \int s^2 ds \int t dt}_{phase space} \operatorname{atan} \frac{(a_s k_F) I(s, t)}{1 - (a_s k_F / \pi) R(s, t)} = 0.51$$

Phase-space Approximation of full ladder resummation

$$\frac{E}{E_{FG}} = 1 + \frac{16}{3\pi} \operatorname{atan} \frac{5/24(a_s k_F)}{1 - (a_s k_F/\pi) \langle R \rangle} \underset{|a_s k_F| \to \infty}{=} 0.36$$

- ✓ Unitary limit well reproduced $\xi_0 \simeq 0.37$ (accepted value)
- ✓ Match the Lee Yang expansion at second order $\langle R \rangle = \frac{6}{35}(11 - 2 \ln 2)$

[AB, Lacroix, J. Phys. G 46, (2019)]

$$E_{int} = \sum_{kk'} V_{eff}(k, k') n_k n_{k'}$$

$$E_{int} = \sum_{kk'} V_{eff}(k, k') n_k n_{k'}$$
Low-lying
excited states
$$n_k \rightarrow n_k + \delta n_k$$

$$\delta E = \sum_k \Sigma^*(k) \delta n_k \longrightarrow$$

$$\Sigma^*(k) = U(k) + iW(k) = \frac{\delta E}{\delta n_k}$$

$$\epsilon_k = \frac{k^2}{2m} + U(k) \quad \text{(single-particle energy)}$$

$$\frac{1}{2\gamma_k} = -W(k) \quad \text{(life-time)}$$

$$E_{int} = \sum_{kk'} V_{eff}(k, k') n_k n_{k'}$$
Low-lying
excited states
$$n_k \rightarrow n_k + \delta n_k$$

$$\delta E = \sum_k \Sigma^*(k) \delta n_k \longrightarrow$$

$$\delta E = \sum_k \Sigma^*(k) \delta n_k \longrightarrow$$

$$\Sigma^*(k) = U(k) + iW(k) = \frac{\delta E}{\delta n_k}$$

$$\epsilon_k = \frac{k^2}{2m} + U(k) \quad (\text{single-particle energy})$$

$$\frac{1}{2\gamma_k} = -W(k) \quad (\text{life-time})$$
Close to
$$V_{kF} \equiv \partial_k \epsilon_k|_{k=k_F}$$

$$\equiv k_F/m^*$$

$$\epsilon_k = \epsilon_{kF} + (k - k_F) \frac{k_F}{m^*} + \cdots$$

D.

$$E_{int} = \sum_{kk'} V_{eff}(k, k') n_k n_{k'}$$

$$Low-lying \\ excited states \qquad n_k \to n_k + \delta n_k$$

$$\delta E = \sum_k \Sigma^*(k) \delta n_k \longrightarrow \delta E \\ \Sigma^*(k) = U(k) + iW(k) = \frac{\delta E}{\delta n_k}$$

$$\epsilon_k = \frac{k^2}{2m} + U(k) \quad (\text{single-particle energy}) \\ \frac{1}{2\gamma_k} = -W(k) \quad (\text{life-time})$$

$$Close \text{ to} \\ Fermi \text{ surface} \qquad v_{k_F} \equiv \partial_k \epsilon_k |_{k=k_F} \\ \equiv k_F/m^* \\ \epsilon_k = \epsilon_{k_F} + (k - k_F) \frac{k_F}{m^*} + \cdots$$

$$Hugenholtz - van Hove theorem \qquad (I)$$

$$\mu = E(N+1) - E(N) = \frac{\partial E}{\partial N} = \epsilon_{k_F}$$

$$Hugenholtz, Van Hove, Physica XXIV (1958)]$$

(HvH)

$$E_{int} = E_{(1)} + E_{(2)} + \cdots$$

$$\begin{split} E_{(1)} &= \frac{10}{9\pi} (a_s k_F) E_{FG} \\ E_{(2)} &= E_{FG} \frac{4}{21\pi^2} (11 - 2 \ln 2) (a_s k_F)^2 \end{split}$$

$$E_{int} = E_{(1)} + E_{(2)} + \cdots$$

$$E_{(1)} = E_{(2)} =$$

$$E_{(1)} = \frac{10}{9\pi} (a_s k_F) E_{FG}$$
$$E_{(2)} = E_{FG} \frac{4}{21\pi^2} (11 - 2\ln 2) (a_s k_F)^2$$

$$\begin{split} \Sigma_{(1)}^{*}(k) &= \frac{4}{3\pi} (a_{s}k_{F}) \mu_{FG} \\ \Sigma_{(2)}^{*}(k) &= \mu_{FG} \left[\phi_{2}(k) + i \chi_{2}(k) \right] (a_{s}k_{F})^{2} \end{split}$$

$$E_{int} = E_{(1)} + E_{(2)} + \cdots$$

$$E_{(1)} = \frac{10}{9\pi} (a_s k_F) E_{FG}$$

$$E_{(2)} = E_{FG} \frac{4}{21\pi^2} (11 - 2\ln 2) (a_s k_F)^2$$

$$\sum^{*}(k) = \sum^{*}_{(1)}(k) + \sum^{*}_{(2)}(k) + \cdots$$

$$\sum^{*}_{(2)}(k) = \frac{4}{3\pi} (a_s k_F) \mu_{FG}$$

$$\sum^{*}_{(2)}(k) = \mu_{FG} [\phi_2(k) + i\chi_2(k)] (a_s k_F)^2$$

$$\frac{\phi_2(k)}{k^{-k_F}} = \frac{4}{15\pi^2} (11 - 2\ln 2) + 2 \left(\frac{k}{k_F} - 1\right) \frac{8}{15\pi^2} (1 - 7\ln 2) + \cdots$$

$$\epsilon(k) = \frac{k^2}{2m} + \frac{U(k)}{Re[\Sigma^{*}(k)]}$$

$$\equiv \mu + (k - k_F) \frac{k_F}{m^{*}} + \cdots$$

$$E_{int} = E_{(1)} + E_{(2)} + \cdots$$

$$E_{(1)} = \frac{10}{9\pi} (a_{s}k_{F})E_{FG}$$

$$E_{(2)} = E_{FG} \frac{4}{21\pi^{2}} (11 - 2\ln 2)(a_{s}k_{F})^{2}$$

$$\sum^{*}(k) = \sum^{*}_{(1)}(k) + \sum^{*}_{(2)}(k) + \cdots$$

$$\sum^{*}_{(1)}(k) = \frac{4}{3\pi} (a_{s}k_{F})\mu_{FG}$$

$$\sum^{*}_{(2)}(k) = \mu_{FG} [\phi_{2}(k) + i\chi_{2}(k)] (a_{s}k_{F})^{2}$$

$$\phi_{2}(k) = \frac{4}{15\pi^{2}} (11 - 2\ln 2) + 2 \left(\frac{k}{k_{F}} - 1\right) \frac{8}{15\pi^{2}} (1 - 7\ln 2) + \cdots$$

$$\epsilon(k) = \frac{k^{2}}{2m} + \frac{U(k)}{Re[\Sigma^{*}(k)]}$$

$$\stackrel{\cong}{=} \mu + (k - k_{F}) \frac{k_{F}}{m^{*}} + \cdots$$

$$\mapsto \begin{cases} \frac{\mu}{\mu_{FG}} = 1 + \frac{4}{3\pi} (a_{s}k_{F}) + \frac{4}{15\pi^{2}} (11 - 2\ln 2)(a_{s}k_{F})^{2} + \cdots$$

$$\frac{m}{m^{*}} = 1 + \frac{8}{15\pi^{2}} (1 - 7\ln 2)(a_{s}k_{F})^{2} + \cdots$$

Ladder approximation: analytical results

$$\Sigma^{\star}(k) = U(k) + iW(k) \qquad U(k < k_F) = \frac{8}{m\pi^2} \int_0^{k_F} s^2 ds \int_0^{\sqrt{k_F^2 - s^2}} t dt \, \mathcal{U}(s, t, k < k_F)$$
[Kaiser, EPJA49 (2013)]

- ✓ valid at low density (Galitskii formula)
- ✓ finite limit at unitarity $|a_s k_F| \rightarrow \infty$

Ladder approximation: analytical results

$$E = E_{FG} + \int_{st} \mathcal{E}(s,t)$$

$$\epsilon(k) = rac{k^2}{2m} + \int_{st} \mathcal{U}(s, t, k)$$

$$E = E_{FG} + \int_{st} \mathcal{E}(s, t)$$

$$\mu = \frac{\partial E}{\partial N}\Big|_{V} = \epsilon(k_{F})$$

$$\downarrow^{\downarrow}_{\downarrow}$$

$$HvH \text{ theorem}$$

$$\epsilon(k) = \frac{k^{2}}{2m} + \int_{st} \mathcal{U}(s, t, k)$$

$$\frac{E}{E_{FG}} = 1 + \frac{10}{9\pi} \frac{(a_s k_F)}{1 - (a_s k_F/\pi) \frac{9\pi^2}{14} \phi_2(k_F)}$$

$$\frac{E}{E_{FG}} = 1 + \frac{10}{9\pi} \frac{(a_s k_F)}{1 - (a_s k_F / \pi) \frac{9\pi^2}{14} \phi_2(k_F)}$$

$$\mu = \frac{\partial E}{\partial N} \Big|_V \qquad \qquad \checkmark \text{ Lee-Yang Formula}$$

$$\frac{\mu}{\mu_{FG}} = 1 + \frac{4}{3} \frac{(a_s k_F)}{\pi - (a_s k_F) \frac{9\pi^2}{14} \phi_2(k_F)} + \frac{2}{9} \frac{(a_s k_F)^2 \frac{9\pi^2}{14} \phi_2(k_F)}{[\pi - (a_s k_F) \frac{9\pi^2}{14} \phi_2(k_F)]^2}$$

$$\phi_2(k_F) \rightarrow \phi_2(k) \qquad \checkmark \text{ HvH theorem } \mu = \epsilon(k_F)$$

$$\frac{\epsilon(k)}{\epsilon_{FG}} = \frac{k^2}{k_F^2} + \frac{4}{3} \frac{(a_s k_F)}{\pi - (a_s k_F) \frac{9\pi^2}{14} \phi_2(k)} + \frac{2}{9} \frac{(a_s k_F)^2 \frac{9\pi^2}{14} \phi_2(k)}{[\pi - (a_s k_F) \frac{9\pi^2}{14} \phi_2(k)]^2}$$

✓ Galitskii Formula

Results

- ✓ exact expansion up to $(a_s k_F)^2$
- $\checkmark\,$ simpler function of the density

MBPT: [Platter et al., NPA714 (2003)] [Doggen & Kinnumen (2015)]

Results

- ✓ exact expansion up to $(a_s k_F)^2$
- \checkmark simpler function of the density
- ✓ pathologies removed for $|a_s k_F| \gg 1$

MBPT: [Platter et al., NPA714 (2003)] BHF: [Doggen & Kinnumen (2015)]

Quasi-particle properties

⊙ non-empirical DFT

- ✓ Study of the DFT as a semi-empirical function of the LECs (a_s, r_s)
- ✓ Applications to cold atoms & neutron matter (equation of state & thermodynamics + static response)
- **⊙** Non-perturbative resummation technique
 - \checkmark Study at energy level \rightarrow Phase-Space Approximation
 - \checkmark link with the semi-empirical DFT = justification
- **⊙** Study of the self-energy
 - $\checkmark\,$ generalization of the Phase-Space Approximation to the self-energy
 - ✓ quasi-particle properties in the non-perturbative regime

Outlooks and perspectives

Perspectives and discussions towards non-empirical DFT

• Analytical developments with simple interactions

- ? more realistic interaction (*p*-wave, ...) ? superfluidity
- ⊙ Cross-fertilization: DFT vs *ab initio*

[Grasso, Prog. in Part. and Nucl. Phys. 106 (2019)]

Outlooks and perspectives

Perspectives and discussions towards non-empirical DFT

 ${\ensuremath{ \odot}}$ Analytical developments with simple interactions

- ? more realistic interaction (*p*-wave, ...) ? superfluidity
- ⊙ Cross-fertilization: DFT vs ab initio

[Grasso, Prog. in Part. and Nucl. Phys. 106 (2019)]

✓ Link with the standard DFT (renormalization of the LECs)

Outlooks and perspectives

Perspectives and discussions towards non-empirical DFT

 ${\ensuremath{ \odot}}$ Analytical developments with simple interactions

- ? more realistic interaction (*p*-wave, ...) ? superfluidity
- ⊙ Cross-fertilization: DFT vs *ab initio*

[Grasso, Prog. in Part. and Nucl. Phys. 106 (2019)]

✓ Link with the standard DFT (renormalization of the LECs)

