Variational Perturbation Theory
for Density Functional Theory

Towards a systematic improvement
of the Hartree-Fock-Bogoliubov approximation

Antoine Boulet
Facility for Rare Isotope Beams (FRIB)

boulet@frib.msu.edu

Collaborator: Scott Bogner (FRIB)

fé’ MICHIGAN STATE
m UNIVERSITY

Research discussion
June 1st, 2020 — FRIB FRIB


mailto:antoine.boulet@ipno.in2p3.fr

El Framework: effective action formalism

® Auxiliary classical fields and path integral Ultimate goal

® Variational Perturbation Theory Develop a systematic and
ﬂ Approximation: gradient expansion constructive strategy to
E] Application: Hatree-Fock approximation obtain a Density Functional
® Variational procedure Theory from first principle
® Link with the Density Matrix Expansion including beyond mean field

1 Perspectives and pairing effects



Framework:
effective action formalism



Fermionic field operators

Considering a spin-saturated many-body system of A fermions (mass 2m = 1 and spin
projection o = £+1/2) associated to a (time-independent) local two-body interaction.
The many-body Hamiltonian is decomposed as H=T+V

T(t)=-3 / dr o} (r) V24, (rt)
V()= 5 3 [ dradra vl (06, (rat) v (1, 12t} (r2)

0102

0olrt) = [ vean)  wbr) = [ ek e, (0

[Fetter & Walecka book’s]



Path integral formulation

Solving the many-body Schrodinger equation i0; |¢) = H |¢) in the Feynman path

integral formalism requires

® the action S[yf, ] = S1[vT, ¥] + Sa[t, )

S[et, 9] —/OOO dtZ/drz/JI.(rt)l[iat+V2—&-ug]lwo(rt)—1—/000 dtV(t)

~ free propagator

@® the partition function Z = /DzﬁD@/} exp(iS[wT,z/)D as a path integral
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Path integral formulation

Solving the many-body Schrodinger equation i0; |¢) = H |¢) in the Feynman path
integral formalism requires

® the action S[yf, ] = S1[vT, ¥] + Sa[t, )

S[et, 9] —/OOO dtZ/drwg(rt)l[iat+v2+ug]lw0(rt)+/0°° dtV(t)

~ free propagator

@® the partition function Z = /DWD@/} exp(iS[wT,w]) as a path integral
v/ analogy with statistical mechanics [Negele & Orland book’s]
X path integral undoable in practice (except for Gaussian, etc.)

— approximation e.g. Variational Perturbation Theory
[Feynman & Kleinert, Phys. Rev. A 34, (1986)]



Auxiliary classical fields Strategy

@ Introduce some well chosen auxiliary classical fields (p, k, k¥, - - - ) associated to an
action S, such that

S§=(51-85)+(S2+S.)

= SO = S,‘
® normal density related to (1T1)) — S,[p] ~ /pib“#

® anormal density related to (¢)) and (¥iT) — S,[k, £*] ~ %/[n Yt 4+ k*pa]

[Kleinert, EJTP 8, (2011)]
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Auxiliary classical fields Strategy

@ Introduce some well chosen auxiliary classical fields (p, k, k¥, - - - ) associated to an
action S, such that

S§=(51-85)+(S2+S.)

= SO = S,‘
® normal density related to (1T1)) — S,[p] ~ /mﬁTtﬂ

® anormal density related to (¢)) and (¥iT) — S,[k, £*] ~ %/[m/ﬁ?/ﬁ + K* )

® Treat the action &; in perturbation according to the reference Gaussian action Sy
® Apply the variational principle to extremize the perturbative action according to
the auxiliary fields

[Kleinert, EJTP 8, (2011)]



Auxiliary classical fields Gaussian action

After some technical manipulations using Grassmann variables, the action Sy can be

written as a convenient

So = (S1 = Salp] = Salr, #7])

= ;/ff,(rm)

-1
= K
£ ]fa'(fzfz)
g " —0p

K
= AO'U/(r].tlv r2t2)

g;},(rl t1, raty) = 6(ry — r2)0(ty — t2)[i0r + V2 + 115|050 free Green's function
&l (rt) = (¥i(rt), ¥, (rt)) doublet Nambu spinor fields
[Gor'kov, Sov. Phys. JETP 7 (1958)]



Generating partition function

® The one-body reference states (generated by the action Sp) are encoded in the
generating partition function

20— [ DEDEerp(iSole! €., min'T) = [ DeDEesp (5 [€lne)



Generating partition function

® The one-body reference states (generated by the action Sp) are encoded in the

20— [ DEDEerp(iSole! €., min'T) = [ DeDEesp (5 [€lne)

© The denote G = jA~!
— functional matrix equation

/ aty / dr Agyo(F1ts, 1t)Gooy(rt, Fats) = 16(r1 — r2)5(t1 — 2)6010,



Generating partition function

® The one-body reference states (generated by the action Sp) are encoded in the
generating partition function

20— [ DEDEerp(iSole! €., min'T) = [ DeDEesp (5 [€lne)

® The one-body Green's function denote G = jA~!
— functional matrix equation

/ aty / dr Agyo(F1ts, 1t)Gooy(rt, Fats) = 16(r1 — r2)5(t1 — 2)6010,

© Integrating out the &, £ d.o.f. define the effective action Qq[p, k, £*]

Zo = exp(i€p) — Qo = —é trIn(—G_1>



Variational Perturbation Theory Observables

v/ By construction, the generating partition function Z; contains everything
we want to known about the system [cf. analogy with statistical mechanics]

1
(Ohomne = 2 / De'Dg Ole!, €] exp(isole! &, p, . 171)



Variational Perturbation Theory Observables

v/ By construction, the generating partition function Z; contains everything

we want to known about the system [cf. analogy with statistical mechanics]
_1 t t s et .
(O)ue = 5 [ DEDEOLE!, ) exp(iSole! €, p. i, )

v The physical mean value (O) should be independent of the auxiliary classical

fields, or equivalently, using the principle of least action




Variational Perturbation Theory Effective action

® The partition function of the system can be expanded using the decomposition
S =80+ Si — exp(iS) = exp(iSo) exp(iS;)
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Variational Perturbation Theory Effective action

® The partition function of the system can be expanded using the decomposition
S =S80+ Si — exp(iS) = exp(iSp) exp(iS;)

o <]
In

2= [DeDEexp(iS) & Z=203 (ST

n=0 "~
® Truncating the infinite sum at a given order N define the effective classical
action Qp in perturbation

Zn =203 (8P = exp(iQulp, £, £7])

* * i
Qulp, &, 7] = Qolp, ki 7]+ (Si) s + 5 ((SPhomme = (SiV2ee) + -+
: connected diagrams I




How to obtain the ground state energy of the system?



Variational Perturbation Theory Ground state energy

® The grand canonical potential at order N in perturbation Ey — A can be
identified as proportional to the effective classical action at zero-temperture

[cf. analogy with statistical mechanics]

Qn B 1
En— pA= lim =N — [ dt~——
N — M Am. B B
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Variational Perturbation Theory Ground state energy

® The grand canonical potential at order N in perturbation Ey — A can be
identified as proportional to the effective classical action at zero-temperture

[cf. analogy with statistical mechanics]

B
EN—uA:ﬁILmoogzﬂl\l B = A dtNkBlT
® The physical value is given by the principle of least action
0Qn 02y QN 0
op 0K OK*

The functional derivative of the zero-order effective action are related to the

one-body Green's functions

j [—Gp —Gﬁr L% Pol

Qo=—=trln Gt ¢, — =6 = G,

2 T Ok




Can we get a proper density functional theory?
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Can we get a density functional theory?

® The Variational Perturbation Theory requires to estimate

(S N = <(; // [I/JI £V12¢21/)1 + /-;127#1102 + K1Y12 + 2p121/)11/J2Dn>

® The Wick contractions in Hartree, Fock, and Bogoliubov channel of the k-point
correlation functions in terms of the two-point correlation functions directly
related to the normal and anormal densities

(Wlwlvan) = (W) (Wive) — (Wiva) (Whn) + (Wiwh) (varn)

® The variational principle leads naturally to two types of equations
® the two-point correlation functions in terms of the one-body Green's functions
— many-body diagrams of the theory
® the auxiliary classical fields in terms of the one-body Green's functions
— self-consistent equations 9



Critical discussion

v/ Adventages

® Systematic improvement of the Hartree-Fock-Bogoliubov Theory from first principles
based on the two-point correlation functions as building blocs.

® Generalizable to include more relevant classical fields associated to collective d.o.f.
of interest allowing for spontaneous symmetry breaking in the ground state.

X Drawbacks

10
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Critical discussion

v/ Adventages

® Systematic improvement of the Hartree-Fock-Bogoliubov Theory from first principles
based on the two-point correlation functions as building blocs.

® Generalizable to include more relevant classical fields associated to collective d.o.f.
of interest allowing for spontaneous symmetry breaking in the ground state.

® The theory is explicit in terms of the densities (Wick contractions) contrary to the
highly non-explicit inversion method due to the use of Legendre transform
[Drut, Furnstahl, and Platter (2010)]

e Contrary to similar approaches relying on Hubbard-Stratanovich transform, the
variational principle fix the auxiliary classical fields and do not induce quantum
fluctuations of the collective fields.

X Drawbacks

® Schematic and requires developments to obtain a clear Density Functional Theory.

e No guidance to solve the functional matrix equation G = jA~! and get the
expression of the one-body Green's function in terms of the auxiliary classical fields.



Approximation:
gradient expansion




Wigner-Weyl transform

@ Center-of-mass and relative coordinate change of variables f(ry,r2) = f(R, r)

ri+ro

R =
2

r=ry—ry
® Wigner-Weyl transform (map quantum phase space and Hilbert space operators)
f(R, k) = /dre*"k"f (R, r)

® Fourier transform in the frequency domain

f(t=1t —t) = /Czk:e"'“’tf(w)

11



Master functional equation

Spacial coordinates (Hilbert space)

/dtZ/drAglg(rltl, I‘t)GUUQ(I't, r2t2) = in(rl — I‘z)(S(tl — t2)5(,—102

? G=iAl
Wigner coordinates (phase space)
jm_fim. exp(é[vR Vi — V- vR,]> Apso (R, k)G (R K w) = iT5, 0,

o R'—RK— |

= exp(N)

[Baraff & Borowitz, Phys. Rev. 121 (1961)] 12



Gradient expansion of the one-body Green’s functions

Expansion of the locating operator Expansion of the Green’s functions
_ N - (m)
exp(A\) = p G = Z G
q=0 m=0

m

. . N9 . .
L k'/'L“k;) JrAno(R K w)Gipr R K, w) = iT6,,4,
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Gradient expansion of the one-body Green’s functions

Expansion of the locating operator Expansion of the Green’s functions
_ N - (m)
exp(A\) = p G = Z G
q=0 m=0

m

. . N9 . .
L k'/'L“qu% JrAno(R K w)Gipr R K, w) = iT6,,4,

The knowledge of the propagator A allow a systematic gradient expansion of the
one-body Green's functions [Ullrich & Gross, Aust. J. Phys. 49 (1996)]

G =GOA] + GW[A, VRA, VAl + GOV - VA, - ]+

13



Application:
Hatree-Fock approximation




lllustration with a simple model

Considering a spin-saturated many-body even-even (A = A; = A/2) system of
fermions (mass 2m = 1 and spin projection o = +1/2) associated to a
(time-independent) local two-body interaction.

For simplicity, the two-body interaction is spin-independent and central

(Vawz(rly r2) = V(I’) with r = ’rl _ r2‘)
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lllustration with a simple model

Considering a spin-saturated many-body even-even (A = A; = A/2) system of
fermions (mass 2m = 1 and spin projection o = +1/2) associated to a
(time-independent) local two-body interaction.

For simplicity, the two-body interaction is spin-independent and central
(Voyo,(F1, r2) = v(r) with r = |ry — ral)
© Everything is diagonal in spin, i.e. G,o» = G0y0r, f14 = 1) = i, €tc.
@ Focus on normal state, i.e. Kk =rx* =0 and (A, G) — (A, G)
® Spherical symmetry assumed

@ No off-shell effects at Hatree-Fock level, i.e. p(t1, t2) x §(t; — t2)

14



Generating partition function

® reference action Sy :/ VI (r1t1)Ager (R, 1, t)thgr (rats)

® propagator A, (R, r,t) = 5(t)6(r)[id: + V? + tis] oo — p(R, 1)5(t)dger
L ] L —
= g_l(R, rt) auxiliary field

15
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Generating partition function

@ reference action Sy = // YL (rit1)Ase (R, 1, t))s(rats)

® propagator A, (R, r,t) = 5(t)6(r)[id: + V? + tis] oo — p(R, 1)5(t)dger
L ] L —
= g_l(R, rt) auxiliary field

© one-body Green’s function G = iA~! (functional equation for operator)

@ effective action Zy = /D¢TD@Z) exp(iSp) = exp(i€2) — Qo = — i tr |n<—Gfl>

(0) = Zlo / DyiDy O, v] exp(iSolw!, v, p])

15



Hartree-Fock effective action

Q1 — Qo = (Si) = (S2) + (Sa)
fz / [ V(0 @l (rt)el (rata)o (rat2) o (1)) 6(2)
(WIr) (WS o) — (] o) (Whpr)
+ 3 [] oR )W rat0) o (r2t2))6(8)600

16



Hartree-Fock effective action

Q1 — Qo = (Si) = (S2) +(Sa)

72// W (rit)vl (rata)t (r2t2)yo(ra1t1)) o(t)
<¢1¢1><¢2¢2> <¢1¢2><%¢1>

+> // p(R, r) (L (r1t1) e (r2t2))5(t) 0600

First extremization — many-body diagrams

00

— =0 = (@l(rin)py(rat)) = 5 —Gyor(R, 1, t)

16



Hartree-Fock self-energy

Q1 — Qo = (Si) = (52) +(Sa)
_ Z// (£)[Goo(R.0,0)Gyror (R,0,0) = Goor(R. 1, £) Goro (R, —r, —1)]

direct (Hartree) exchange (Fock)

- Z//p(R, rGoo (R, 1, 1)

17



Hartree-Fock self-energy

Q1 — Qo = (Si) = (52) +(Sa)
- Z// ([Goo (R, 0,0)G,1(R,0,0) ~ Gy (R, 7, 1)Gyig (R, —r, ~1)]

oo’

direct (Hartree) exchange (Fock)

- Z//p(R, )Goo (R, 7, )

Second extremization — self-consistent equation (self-energy)

Q K
X o L pRK)=[dr [ 9 e (R KR, K') G(R' K, o)
op @3 ) 2n
| direct + exchange
phase space

17



One-body density matrix

© the propagator defined in terms of the auxiliary field: A=g~1 —p

© the one-body Green's function given by the gradient expansion of G = A~}
— G[p,VR-Vip, VR -Vrp, Vi - Vkp, -]
® the auxiliary field given by the solution of the self-consistent equation p = K, G

18



One-body density matrix

© the propagator defined in terms of the auxiliary field: A=g~1 —p

© the one-body Green’s function given by the gradient expansion of G = A1

® the auxiliary field given by the solution of the

n(R,k):/g:G(R,k,w) (R, r)

18



One-body density matrix

© the propagator defined in terms of the auxiliary field: A=g~1 —p

© the one-body Green's function given by the gradient expansion of G = A~}
- G[/), TR . Tk/), VR : TR/), Tk . Vk/), 00 ]
® the auxiliary field given by the solution of the self-consistent equation p = K, G

n(R,k):/g:G(R,k,w) (R, r)

Q _ Q " ~
Jim % - 2vo/an(R,O)(R,O)—/ dR/ drv(r)n(R, r)n(R, —r)
— 00
I direct (Hartree) o exchange (Fock) I
1
=5 tr(ny Vi2(1 — P12)ny) v Hartree-Fock result

18



Density Matrix Expansion

The idea of the density matrix expansion (DME) is to factorize the non-local part of
the one-body density matrix using an expansion around a momentum scale,
typically the local Fermi-momentum kg(R)

[Negele & Vautherin] [Gebremariam, Duguet, Bogner, Furnstahl, Schunck, Navarro Pérez, ...]

7(R)
2

V2n(R)
e

n(R, r) ~ n(R)No(rke) + Mi(rke) + Mo(rke) + - -

n(R) = n(R, r)|r=0 = n(r1,r2)|ri=r, local density

T(R)=Vr -Vign(ri, r2)|r=r local kinetic density

19



Density Matrix Expansion

The idea of the density matrix expansion (DME) is to factorize the non-local part of
the one-body density matrix using an expansion around a momentum scale,
typically the local Fermi-momentum kg(R)

[Negele & Vautherin] [Gebremariam, Duguet, Bogner, Furnstahl, Schunck, Navarro Pérez, ...]

7(R)
2

V2n(R)

Tnz(rk/:) SRR
F

n(R, r) ~ n(R)MNo(rke) +

I‘Il(rkF) F

n(R) = n(R, r)|r=0 = n(r1,r2)|ri=r, local density

T(R)=Vr -Vign(ri, r2)|r=r local kinetic density

Is the gradient expansion of the one-body Green’s function can be connected

to the density matrix expansion?
19



Link with the Density Matrix Expansion

At of the one-body Green's function, the
one-body density matrix reads X technical

(R K) = [ SR, k) =01~ p(R,K) ~ )

infinite matter

+ A(p)0'(p(R, k) + k* — 1) + fa(p)d" (p(R, k) + K* — 1)

gradient corrections

fi(p) and f>(p) are functions of the auxiliary fields p and its gradients
Local Fermi momentum kgr(R) defined by i — p(R, kr(R)) — kr(R)?> =0

20



Link with the Density Matrix Expansion

Taking the inverse Wigner transform (R, k) — (R, r) X technical

K2 56m%  4kZ

o(R.r) = k¢ 3ju(rke) lT(R) 3K V%(R)} o

K
672 rkp o (rkF)

N [n(R) B k,%] B3(rke) + K [VZm*(R) B (Vm*(R))j .

672 6m2 | kZm*(R)  2kZm*(R)

v non-local contribution factorized (very similar but not identical to the DME)
v local Fermi-momentum kg = kg(R) and local [kinetic] density n(R) [7(R)]
v/ angle R-7 = cosf (averaged in the DME at Hartree-Fock level)
v correction appears naturally (not present in the DME)

[cf. Landau theory of Fermi liquid]

k2 IS

self-energy  ~ om +p(R, k) = + O(k — ke)®

2m*(R, k) 21



Towards Density Functional Theory

® Use the gradient expansion of the one-body density matrix, and integrate out the
non-locality in the energy expression

Q4 Qo 1
[im — = lim ——I-ftrnVn
,Bﬁooﬁ %ooﬁ (1 12 2)

= zoj/dR {2,”:((5)/@ + n(R)F[n(R)]}

[Lipparini book’s] [Boulet & Lacroix, J. Phys. G 46, (2019)]
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Towards Density Functional Theory

® Use the gradient expansion of the one-body density matrix, and integrate out the
non-locality in the energy expression

Q4 Qo 1
[im — = lim ——I-ftrnVn
ﬁ%ooﬁ %ooﬁ (1 12 2)

= zoj/dR {2,77:((3)/@ + n(R)F[n(R)]}

® Leads to the self-consistent Kohn-Sham equations
1

—Ve——- R), 7(R i(R) = €;¢i(R

{Vamtry 7+ UIn(R). (R | 61(R) = 61 (R)

Ulnr=r 2l s D) n(R)= SIoRP  1(R) = T IVau(R)F

[Lipparini book’s] [Boulet & Lacroix, J. Phys. G 46, (2019)]

22



Perspectives




Summary and critical discussion

® Extension of the Variational Perturbation Theory
e include auxiliary fields related to the collective d.o.f. of interest
® perform perturbative approach of the effective action according to the reference
partition function
® apply the variational principle and Wick contractions to get physical observable
® Gradient expansion of the one-body Green’s functions
v direct connection with the density matrix expansion
® Neutron drops with a semi-realistic Hamiltonian compared to other perturbative

treatments and to ab-initio results

Provide a systematic and constructive approach for Density Functional Theory
beyond mean field including pairing from first principle but:

X Very technical even for simple model

X Explosion of the number of many-body diagrams
23
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