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Framework:
effective action formalism



Fermionic field operators

Considering a spin-saturated many-body system of A fermions (mass 2m = 1 and spin
projection σ = ±1/2) associated to a (time-independent) local two-body interaction.
The many-body Hamiltonian is decomposed as Ĥ = T̂ + V̂

T̂ (t) = −
∑
σ

∫
dr ψ†

σ(rt)∇2ψσ(rt)

V̂ (t) = 1
2

∑
σ1σ2

∫∫
dr1dr2 ψ

†
σ1(r1t)ψ†

σ2(r2t)vσ1σ2(r1, r2)ψσ2(r2t)ψσ1(r1t)

ψσ(rt) =
∫ dk

(2π)3ϕkσ(r)ckσ(t) ψ†
σ(rt) =

∫ dk
(2π)3ϕ

∗
kσ(r)c†

kσ(t)

[Fetter & Walecka book’s] 1



Path integral formulation

Solving the many-body Schrödinger equation i∂t |φ〉 = Ĥ |φ〉 in the Feynman path
integral formalism requires

� the action S[ψ†,ψ] ≡ S1[ψ†,ψ] + S2[ψ†,ψ]

S[ψ†,ψ] =
∫ ∞

0
dt

∑
σ

∫
dr ψ†

σ(rt) [i∂t + ∇2 + µσ]
∼ free propagator

ψσ(rt) +
∫ ∞

0
dtV̂ (t)

� the partition function Z =
∫

Dψ†Dψ exp
(
iS[ψ†,ψ]

)
as a path integral

3 analogy with statistical mechanics [Negele & Orland book’s]
7 path integral undoable in practice (except for Gaussian, etc.)

→ approximation e.g. Variational Perturbation Theory
[Feynman & Kleinert, Phys. Rev. A 34, (1986)]
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Auxiliary classical fields Strategy

� Introduce some well chosen auxiliary classical fields (ρ,κ,κ∗, · · · ) associated to an
action Sa such that

S = (S1 − Sa)
≡ S0

+ (S2 + Sa)
≡ Si

• normal density related to 〈ψ†ψ〉 → Sa[ρ] ∼
∫
ρψ†ψ

• anormal density related to 〈ψψ〉 and 〈ψ†ψ†〉 → Sa[κ,κ∗] ∼ 1
2

∫
[κψ†ψ† + κ∗ψψ]

...
� Treat the action Si in perturbation according to the reference Gaussian action S0

� Apply the variational principle to extremize the perturbative action according to
the auxiliary fields

[Kleinert, EJTP 8, (2011)]
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Auxiliary classical fields Gaussian action

After some technical manipulations using Grassmann variables, the action S0 can be
written as a convenient Gaussian matrix expression

S0 = (S1 − Sa[ρ] − Sa[κ,κ∗])

= 1
2

∫
ξ†
σ(r1t1)

[
g−1 + ρ κ

κ∗ g̃−1 − ρ

]
≡ Aσσ′(r1t1, r2t2)

ξσ′(r2t2)

g−1
σσ′(r1t1, r2t2) = δ(r1 − r2)δ(t1 − t2)[i∂t + ∇2 + µσ]δσσ′ free Green’s function
ξ†

σ(rt) = (ψ†
σ(rt),ψσ(rt)) doublet Nambu spinor fields

[Gor’kov, Sov. Phys. JETP 7 (1958)]
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Generating partition function

� The one-body reference states (generated by the action S0) are encoded in the
generating partition function

Z0 =
∫

Dξ†Dξ exp
(
iS0[ξ†, ξ, ρ,κ,κ∗]

)
=

∫
Dξ†Dξ exp

( i
2

∫
ξ†A ξ

)
� The one-body Green’s function denote G = iA−1

→ functional matrix equation

∫
dt

∑
σ

∫
dr Aσ1σ(r1t1, rt)Gσσ2(rt, r2t2) = iIδ(r1 − r2)δ(t1 − t2)δσ1σ2

� Integrating out the ξ, ξ† d.o.f. define the effective action Ω0[ρ,κ,κ∗]

Z0 ≡ exp(iΩ0) → Ω0 = − i
2 tr ln

(
−G−1

)
5
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Variational Perturbation Theory Observables

3 By construction, the generating partition function Z0 contains everything
we want to known about the system [cf. analogy with statistical mechanics]

〈O〉ρ,κ,κ∗ ≡ 1
Z0

∫
Dξ†DξO[ξ†, ξ] exp

(
iS0[ξ†, ξ, ρ,κ,κ∗]

)
3 The physical mean value 〈O〉 should be independent of the auxiliary classical

fields, or equivalently, using the principle of least action

δ〈O〉
δρ

= δ〈O〉
δκ

= δ〈O〉
δκ∗ = 0

6
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Variational Perturbation Theory Effective action

� The partition function of the system can be expanded using the decomposition
S = S0 + Si → exp(iS) = exp(iS0) exp(iSi)

Z =
∫

Dξ†Dξ exp(iS) ⇔ Z = Z0

∞∑
n=0

in

n!〈Sn
i 〉ρ,κ,κ∗

� Truncating the infinite sum at a given order N define the effective classical
action ΩN in perturbation

ZN = Z0

N∑
n=0

in

n!〈Sn
i 〉ρ,κ,κ∗ ≡ exp(iΩN [ρ,κ,κ∗])

ΩN [ρ,κ,κ∗] = Ω0[ρ,κ,κ∗] + 〈Si〉ρ,κ,κ∗ + i
2

(
〈S2

i 〉ρ,κ,κ∗ − 〈Si〉2
ρ,κ,κ∗

)
+ · · ·

connected diagrams
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How to obtain the ground state energy of the system?
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Variational Perturbation Theory Ground state energy

� The grand canonical potential at order N in perturbation EN − µA can be
identified as proportional to the effective classical action at zero-temperture
[cf. analogy with statistical mechanics]

EN − µA = lim
β→∞

ΩN
β

β =
∫ β

0
dt ∼ 1

kBT
� The physical value is given by the principle of least action

δΩN
δρ

= δΩN
δκ

= δΩN
δκ∗ = 0

The functional derivative of the zero-order effective action are related to the
one-body Green’s functions

Ω0 = − i
2 tr ln

[
−Gρ −Gκ
−G†

κ −G̃ρ

]−1

≡ −G−1

→ δΩ0
δρ

= Gρ
δΩ0
δκ

= Gκ
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Can we get a proper density functional theory?

8



Can we get a density functional theory?

� The Variational Perturbation Theory requires to estimate

〈Sn
i 〉ρ,κ,κ∗ =

〈(1
2

∫∫ [
ψ†

1ψ
†
2V12ψ2ψ1 + κ12ψ

†
1ψ

†
2 + κ∗

12ψ1ψ2 + 2ρ12ψ
†
1ψ2

])n〉
� The Wick contractions in Hartree, Fock, and Bogoliubov channel of the k-point

correlation functions in terms of the two-point correlation functions directly
related to the normal and anormal densities

〈ψ†
1ψ

†
2ψ2ψ1〉 = 〈ψ†

1ψ1〉〈ψ†
2ψ2〉 − 〈ψ†

1ψ2〉〈ψ†
2ψ1〉 + 〈ψ†

1ψ
†
2〉〈ψ2ψ1〉

...
� The variational principle leads naturally to two types of equations

• the two-point correlation functions in terms of the one-body Green’s functions
→ many-body diagrams of the theory

• the auxiliary classical fields in terms of the one-body Green’s functions
→ self-consistent equations 9
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Critical discussion

3 Adventages
• Systematic improvement of the Hartree-Fock-Bogoliubov Theory from first principles

based on the two-point correlation functions as building blocs.
• Generalizable to include more relevant classical fields associated to collective d.o.f.

of interest allowing for spontaneous symmetry breaking in the ground state.
• The theory is explicit in terms of the densities (Wick contractions) contrary to the

highly non-explicit inversion method due to the use of Legendre transform
[Drut, Furnstahl, and Platter (2010)]

• Contrary to similar approaches relying on Hubbard-Stratanovich transform, the
variational principle fix the auxiliary classical fields and do not induce quantum
fluctuations of the collective fields.

7 Drawbacks
• Schematic and requires developments to obtain a clear Density Functional Theory.
• No guidance to solve the functional matrix equation G = iA−1 and get the

expression of the one-body Green’s function in terms of the auxiliary classical fields.
10
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Approximation:
gradient expansion



Wigner-Weyl transform

� Center-of-mass and relative coordinate change of variables f (r1, r2) = f (R, r)

R ≡ r1 + r2
2 r ≡ r1 − r2

� Wigner-Weyl transform (map quantum phase space and Hilbert space operators)

f (R, k) =
∫

dre+ik·r f (R, r)

� Fourier transform in the frequency domain

f (t = t1 − t2) =
∫ dω

2π e−iωt f (ω)

11



Master functional equation

Spacial coordinates (Hilbert space)

∫
dt

∑
σ

∫
dr Aσ1σ(r1t1, rt)Gσσ2(rt, r2t2) = iIδ(r1 − r2)δ(t1 − t2)δσ1σ2

m G = iA−1

Wigner coordinates (phase space)

∑
σ

lim
R′→R

lim
k′→k

exp
(

− i
2[∇R · ∇k′ − ∇k · ∇R′ ]

)
≡ exp(Λ)

Aσ1σ(R, k,ω)Gσσ2(R ′, k′,ω) = iIδσ1σ2

[Baraff & Borowitz, Phys. Rev. 121 (1961)] 12



Gradient expansion of the one-body Green’s functions

Expansion of the locating operator

exp(Λ) =
∞∑

q=0

Λq

q!

Expansion of the Green’s functions

G =
∞∑

m=0
G(m)

∑
σ

lim
R′→R

lim
k′→k

m∑
q=0

Λq

q! Aσ1σ(R, k,ω)G(m−q)
σσ2 (R ′, k′,ω) = iIδσ1σ2

The knowledge of the propagator A allow a systematic gradient expansion of the
one-body Green’s functions [Ullrich & Gross, Aust. J. Phys. 49 (1996)]

G = G(0)[A] + G(1)[A, ∇RA, ∇kA] + G(2)[∇R · ∇kA, · · · ] + · · ·

13
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Application:
Hatree-Fock approximation



Illustration with a simple model

Considering a spin-saturated many-body even-even (A↑ = A↓ = A/2) system of
fermions (mass 2m = 1 and spin projection σ = ±1/2) associated to a
(time-independent) local two-body interaction.

For simplicity, the two-body interaction is spin-independent and central
(vσ1σ2(r1, r2) = v(r) with r = |r1 − r2|)

� Everything is diagonal in spin, i.e. Gσσ′ ≡ Gδσσ′ , µ↑ = µ↓ ≡ µ, etc.
� Focus on normal state, i.e. κ = κ∗ = 0 and (A,G) → (A, G)
� Spherical symmetry assumed
� No off-shell effects at Hatree-Fock level, i.e. ρ(t1, t2) ∝ δ(t1 − t2)

14
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� Spherical symmetry assumed
� No off-shell effects at Hatree-Fock level, i.e. ρ(t1, t2) ∝ δ(t1 − t2)
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Generating partition function

� reference action S0 =
∫∫

ψ†
σ(r1t1)Aσσ′(R, r , t)ψσ′(r2t2)

� propagator Aσσ′(R, r , t) = δ(t)δ(r)[i∂t + ∇2 + µσ]

≡ g−1(R, r , t)

δσσ′ − ρ(R, r)δ(t)δσσ′

auxiliary field

� one-body Green’s function G = iA−1 (functional equation for operator)

� effective action Z0 =
∫

Dψ†Dψ exp(iS0) ≡ exp(iΩ0) → Ω0 = −i tr ln
(
−G−1

)

〈O〉ρ ≡ 1
Z0

∫
Dψ†DψO[ψ†,ψ] exp

(
iS0[ψ†,ψ, ρ]

)
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Hartree-Fock effective action

Ω1 − Ω0 = 〈Si〉 = 〈S2〉 + 〈Sa〉

= 1
2

∑
σσ′

∫∫
v(r) 〈ψ†

σ(r1t1)ψ†
σ′(r2t2)ψσ′(r2t2)ψσ(r1t1)〉

〈ψ†
1ψ1〉〈ψ†

2ψ2〉−〈ψ†
1ψ2〉〈ψ†

2ψ1〉

δ(t)

+
∑
σσ′

∫∫
ρ(R, r)〈ψ†

σ(r1t1)ψσ′(r2t2)〉δ(t)δσσ′

First extremization → many-body diagrams

δΩ1
δρ

= 0 → 〈ψ†
σ(r1t1)ψσ′(r2t2)〉 = δΩ0

δρ
= −Gσσ′(R, r , t)
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Hartree-Fock self-energy

Ω1 − Ω0 = 〈Si〉 = 〈S2〉 + 〈Sa〉

=
∑
σσ′

∫∫
v(r)δ(t)[Gσσ(R, 0, 0)Gσ′σ′(R, 0, 0)

direct (Hartree)

− Gσσ′(R, r , t)Gσ′σ(R, −r , −t)
exchange (Fock)

]

−
∑
σσ′

∫∫
ρ(R, r)Gσσ′(R, r , t)

Second extremization → self-consistent equation (self-energy)

δΩ1
δρ

= 0 → ρ(R, k) =
∫

dR ′
∫ dk′

(2π)3

phase space

∫ dω′

2π Kv (R, k|R ′, k′)
direct + exchange

G(R ′, k′,ω′)
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One-body density matrix

� the propagator defined in terms of the auxiliary field: A = g−1 − ρ

� the one-body Green’s function given by the gradient expansion of G = iA−1

→ G [ρ, ∇R · ∇kρ, ∇R · ∇Rρ, ∇k · ∇kρ, · · · ]
� the auxiliary field given by the solution of the self-consistent equation ρ = Kv G

n(R, k) =
∫ dω

2π G(R, k,ω) → n(R, r)

lim
β→∞

Ω1 − Ω0
β

= 2v0

∫
dRn(R, 0)(R, 0)

direct (Hartree)

−
∫

dR
∫

dr v(r)n(R, r)n(R, −r)

exchange (Fock)

≡ 1
2 tr(n1V12(1 − P12)n2) 3 Hartree-Fock result
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Density Matrix Expansion

The idea of the density matrix expansion (DME) is to factorize the non-local part of
the one-body density matrix using an expansion around a momentum scale,
typically the local Fermi-momentum kF (R)
[Negele & Vautherin] [Gebremariam, Duguet, Bogner, Furnstahl, Schunck, Navarro Pérez, ...]

n(R, r) ' n(R)Π0(rkF ) + τ(R)
k2

F
Π1(rkF ) + ∇2n(R)

k2
F

Π2(rkF ) + · · ·

n(R) = n(R, r)|r=0 = n(r1, r2)|r1=r1 local density

τ(R) = ∇r1 · ∇r2 n(r1, r2)|r1=r1 local kinetic density

Is the gradient expansion of the one-body Green’s function can be connected
to the density matrix expansion?
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Link with the Density Matrix Expansion I

At second order in the gradient expansion of the one-body Green’s function, the
one-body density matrix reads 7 technical

n(R, k) =
∫ dω

2π G(R, k,ω) = θ(µ− ρ(R, k) − k2)
infinite matter

+ f1(ρ)δ′(ρ(R, k) + k2 − µ) + f2(ρ)δ′′(ρ(R, k) + k2 − µ)
gradient corrections

f1(ρ) and f2(ρ) are functions of the auxiliary fields ρ and its gradients
Local Fermi momentum kF (R) defined by µ− ρ(R, kF (R)) − kF (R)2 = 0
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Link with the Density Matrix Expansion II

Taking the inverse Wigner transform (R, k) → (R, r) 7 technical

n(R, r) = k3
F

6π2
3j1(rkF )

rkF
+

[
τ(R)
k2

F
− 3

5
k3

F
6π2 − ∇2n(R)

4k2
F

]
Bτθ (rkF )

+
[
n(R) − k3

F
6π2

]
B0
θ(rkF ) + k3

F
6π2

[
∇2m?(R)
k2

F m?(R)
− (∇m?(R))2

2k2
F m?(R)

]
B?θ(rkF )

3 non-local contribution factorized (very similar but not identical to the DME)
3 local Fermi-momentum kF ≡ kF (R) and local [kinetic] density n(R) [τ(R)]
3 angle R̂ · r̂ = cos θ (averaged in the DME at Hartree-Fock level)
3 effective mass correction appears naturally (not present in the DME)

[cf. Landau theory of Fermi liquid]

self-energy ∼ k2

2m + ρ(R, k) = k2

2m?(R, kF ) + O(k − kF )3
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Towards Density Functional Theory

� Use the gradient expansion of the one-body density matrix, and integrate out the
non-locality in the energy expression

lim
β→∞

Ω1
β

= lim
β→∞

Ω0
β

+ 1
2 tr(n1V12n2)

=
∑
σ

∫
dR

{
τ(R)

2m?(R, kF ) + n(R)Γ[n(R)]
}

� Leads to the self-consistent Kohn-Sham equations{
−∇ 1

2m?(R, kF ) · ∇ + U[n(R), τ(R)]
}
φi(R) = εiφi(R)

U[n, τ ] = τ
δ

δn
1

2m?
+ δ

δn (nΓ[n]) n(R) =
∑

|φi (R)|2 τ(R) =
∑

|∇φi (R)|2

[Lipparini book’s] [Boulet & Lacroix, J. Phys. G 46, (2019)]
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Perspectives



Summary and critical discussion

� Extension of the Variational Perturbation Theory
• include auxiliary fields related to the collective d.o.f. of interest
• perform perturbative approach of the effective action according to the reference

partition function
• apply the variational principle and Wick contractions to get physical observable

� Gradient expansion of the one-body Green’s functions
3 direct connection with the density matrix expansion

� Neutron drops with a semi-realistic Hamiltonian compared to other perturbative
treatments and to ab-initio results

Provide a systematic and constructive approach for Density Functional Theory
beyond mean field including pairing from first principle but:

7 Very technical even for simple model
7 Explosion of the number of many-body diagrams
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