Bridging nuclear *ab-initio* methods and Energy Density Functional Theories

From ultracold atoms to nuclear matter

Antoine BOULET

Theory group, IPN Orsay antoine.boulet@ipno.in2p3.fr

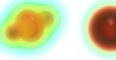
Supervisor: Denis LACROIX

Collaborators: Jérémy BONNARD, Marcella GRASSO, Jerry YANG

Content of the presentatior

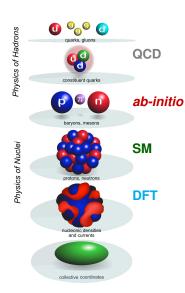
- 1 Motivations and context
 - DFT vs EFT
 - Cold Fermi Gas

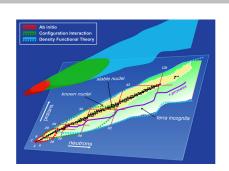
- 2 Non-empirical functional
 - Resummed formula for unitary gas
 - Non-empirical DFT for neutron matter



- 3 Recent applications
 - Ground State thermodynamical properties
 - Static linear response
 - Dynamical response (hydrodynamical regime)

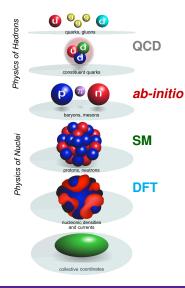
- 4 Self-energy resummation
- 5 Summary and outlook

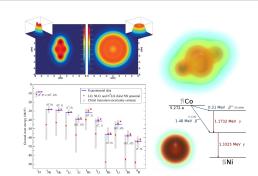




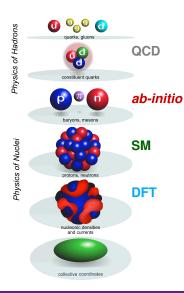
Motivations and context

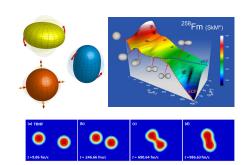
0000



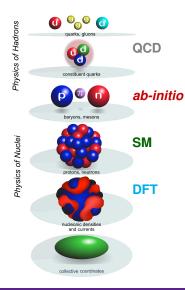


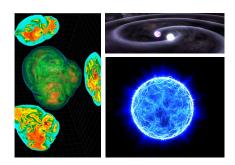
- ► GS structure of the atomic nuclei
- Small and large amplitude dynamics
- Thermodynamics (finite/infinite systems)



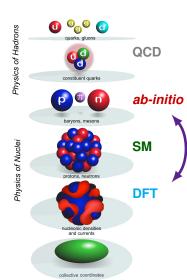


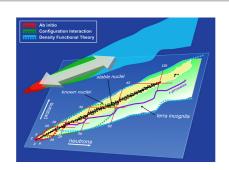
- Small and large amplitude dynamics



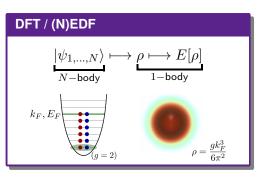


- GS structure of the atomic nuclei
- Small and large amplitude dynamics
- ► Thermodynamics (finite/infinite systems)

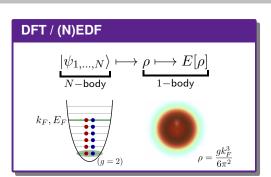




- GS structure of the atomic nuclei
- Small and large amplitude dynamics
- Thermodynamics (finite/infinite systems)



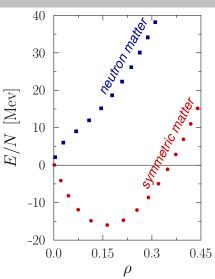
$$E[\rho] = \left\langle \psi[\rho] \middle| T + V_{\text{eff}} \middle| \psi[\rho] \right\rangle$$
$$= \left\langle T \right\rangle + c_1 \rho^{\beta_1} + c_2 \rho^{\beta_2}$$

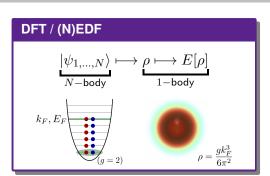


Nuclear DFT (Hartree-Fock like)

$$E[
ho] = \left\langle \psi[
ho] \middle| T + V_{\text{eff}} \middle| \psi[
ho] \right\rangle$$

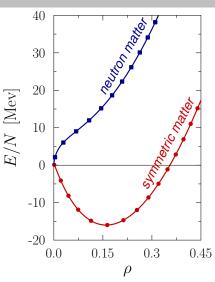
= $\left\langle T \right\rangle + c_1 \rho^{\beta_1} + c_2 \rho^{\beta_2}$



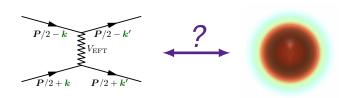


Nuclear DFT (Hartree-Fock like)

$$E[\rho] = \left\langle \psi[\rho] \middle| T + \mathbf{V}_{\text{eff}} \middle| \psi[\rho] \right\rangle$$
$$= \left\langle T \right\rangle + c_1 \rho^{\beta_1} + c_2 \rho^{\beta_2} + \cdots$$



How to relate LECs to DFT? and make it less empirical?



- ► Low density expansion
- Unitary limit

EFT at low density (s-scattering wave)

$$\frac{\langle \mathbf{k'} | V_{\text{EFT}} | \mathbf{k} \rangle = \frac{4\pi \mathbf{a_s}}{m}}{\sum_{P/2-k'} V_{\text{EFT}}}$$

 a_s : s-wave scattering length

Many-Body Perturbation Theory: Lee-Yang formula

$$|a_s k_F| \ll 1$$

$$\frac{E}{E_{EG}} = \frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi^2} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots$$

$$E_{FG} = \frac{3}{5} \frac{k_F^2}{2m}$$

(Free gas energy)

$$k_F = \left(3\pi^2\rho\right)^{1/3}$$
 (Fermi momentum)

EFT at low density (s-scattering wave)

$$\langle \boldsymbol{k'} | V_{\text{EFT}} | \boldsymbol{k} \rangle = \frac{4\pi \boldsymbol{a_s}}{m} \left[1 + \frac{\boldsymbol{r_e a_s}}{4} \left(\boldsymbol{k^2 + k'^2} \right) + \cdots \right]$$

$$\boldsymbol{a_s} : s \text{-wave effective solution}$$

P/2 + k

P/2 + k

 a_s : s-wave scattering length r_{e} : s-wave effective range

Many-Body Perturbation Theory: Lee-Yang formula

$$|a_s k_F| \ll 1$$
 and $|r_e k_F| \ll 1$

$$\frac{E}{E_{FG}} = \frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi^2} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots
+ \frac{1}{6\pi} (\boldsymbol{r_e k_F}) (\boldsymbol{a_s k_F})^2 + \cdots$$

$$E_{FG} = \frac{3}{5} \frac{k_F^2}{2m}$$

(Free gas energy)

$$k_F = \left(3\pi^2\rho\right)^{1/3}$$
 (Fermi momentum)

EFT at low density (s-scattering wave)

$$\langle \boldsymbol{k'} | V_{\text{EFT}} | \boldsymbol{k} \rangle = \frac{4\pi \boldsymbol{a_s}}{m} \left[1 + \frac{\boldsymbol{r_e a_s}}{4} \left(\boldsymbol{k^2 + k'^2} \right) + \cdots \right]$$

$$\boldsymbol{a_s} : s \text{-wave scattering}$$

$$\boldsymbol{r_e} : s \text{-wave effective r}$$

 a_s : s-wave scattering length r_e : s-wave effective range

MBPT $E = \begin{array}{c} + \\ + \\ + \\ + \\ \vdots \end{array} \begin{array}{c} E_{\boldsymbol{a_s}}^{(1)} & + & E_{\boldsymbol{a_s}}^{(2)} & + & \cdots \\ E_{\boldsymbol{a_s},r_e}^{(1)} & + & E_{\boldsymbol{a_s},r_e}^{(2)} & + & \cdots \\ \vdots & & \text{Increasing} \end{array}$ complexity

For neutron matter

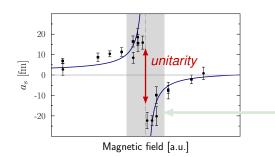
$$a_s = -18.9\,\mathrm{fm}\,\mid\,r_e\,=2.7\,\mathrm{fm}$$

▶ Validity (
$$|a_s k_F| < 1$$
):
 $\rho < 10^{-6} \text{ fm}^{-3}$

New insight from unitary Fermi gas Physical scales of interest

DFT at unitarity ($a_s ightarrow \pm \infty$ **)**

$$\frac{E[\rho]}{E_{FG}} = \xi_0$$



 $\xi_0 \simeq 0.37$ (Bertsch parameter)

$$E_{FG} = \frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \rho \label{eq:EFG}$$
 (Free Gas energy)

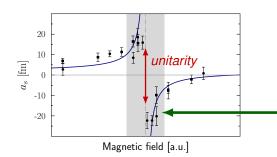
For Neutron Matter $a_s=-18.9~{
m fm}$ $r_e=2.7~{
m fm}$

[Regal & Jin. PRL 90 (2003)]

New insight from unitary Fermi gas Physical scales of interest

DFT at unitarity ($a_s ightarrow \pm \infty$ **)**

$$\frac{E[\rho]}{E_{FG}} = \boldsymbol{\xi_0}$$



 $\xi_0 \simeq 0.37$ (Bertsch parameter)

2 +212

$$E_{FG} = \frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \rho \label{eq:EFG}$$
 (Free Gas energy)

For Neutron Matter

$$a_s = -18.9 \text{ fm}$$

$$r_e = 2.7 \text{ fm}$$

[Regal & Jin. PRL 90 (2003)]

Ladder particle-particle diagrams resummation

Contact interaction (EFT) P/2 - kP/2 - k'P/2 + k'

$$E = \begin{pmatrix} \frac{2\pi a_s}{m} \end{pmatrix} \iint \frac{d^3P}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \frac{\theta_k^-}{1 - (a_s k_F)^F(P, k)} d^3k$$

Antoine BOULET

Ladder particle-particle diagrams resummation

Contact interaction (EFT) P/2 - kP/2 - k'P/2 + k'

$$E = \begin{cases} O(a_s k_F)^2 & O(a_s k_F)^3 & O(a_s k_F)^4 \\ O(a_s k_F)^4 & O(a_s k_F)^4 \\ O(a_s k_F)^4 & O(a_s k_F)^6 \\ O(a_s k_F)^6 & O(a_s k_F)^6 \\ O(a_s k_F)^6$$

Resummed formula for unitary gas Ladder particle-particle diagrams resummation

Contact interaction (EFT) P/2 - kP/2 - k'P/2 + k'

[Steele, arXiv:nucl-th/0010066 (2000)]

$$E = \begin{cases} & O(a_s k_F)^2 & O(a_s k_F)^3 & O(a_s k_F)^4 \\ & + & \cdots \\ & + & \cdots \\ & = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_{\mathbf{k}}^-}{1 - (a_s k_F) F(P, \mathbf{k})} \end{cases}$$

Resummed formula for unitary gas Ladder particle-particle diagrams resummation

[Steele, arXiv:nucl-th/0010066 (2000)]

- ► Contains terms to **all order** in (a_sk_F)
- Finite limit for Unitary gas $(a_s \to \pm \infty)$
- Results strongly depends on selected diagram

$$E = \begin{cases} O(a_s k_F) & O(a_s k_F)^2 & O(a_s k_F)^3 & O(a_s k_F)^4 \\ O(a_s k_F)^4 & O(a_s k_F)^4 & O(a_s k_F)^6 \end{cases} + \cdots + constant = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_k^-}{1 - (a_s k_F) F(P, k)}$$

Antoine BOULET

Resummed formula for unitary gas

$$E = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3P}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \frac{\theta_k^-}{1 - (a_s k_F) F(P, k)}$$
$$= \left[\frac{10}{9\pi} (a_s k_F) + \frac{4}{21\pi} (11 - 2\ln 2) (a_s k_F)^2 + \cdots\right] E_{FG}$$

$$F(P,k) \longmapsto \frac{6}{35\pi}(11-2\ln 2)$$

$$\frac{E}{E_{\text{FG}}} = \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{6}{35\pi} (11 - 2\ln 2) (a_s k_F)}$$

$$\xi_0 = 0.32$$

$$E = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_k^-}{1 - (\boldsymbol{a_s k_F}) \boldsymbol{F(P, k)}}$$
$$= \left[\frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots\right] E_{FG}$$

$$F(P,k) \longmapsto \frac{6}{35\pi}(11-2\ln 2)$$

$$\frac{E}{E_{\text{FG}}} = \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{6}{35\pi} (11 - 2\ln 2) (a_s k_F)}$$

$$\xi_0 = 0.32$$

$$E = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_k^-}{1 - (\boldsymbol{a_s k_F}) \boldsymbol{F(P, k)}}$$
$$= \left[\frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots\right] E_{FG}$$

Phase-space average

$$F(P,k) \longmapsto \frac{6}{35\pi}(11 - 2\ln 2)$$

$$\frac{E}{E_{\text{FG}}} = \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{6}{35\pi} (11 - 2\ln 2) (a_s k_F)}$$

[Schäfer et al., NPA 762 (2005)]

$$\xi_0 = 0.32$$

$$E = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_k^-}{1 - (\boldsymbol{a_s k_F}) \boldsymbol{F(P, k)}}$$
$$= \left[\frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots\right] E_{FG}$$

Phase-space average

$$F(P,k) \longmapsto \frac{6}{35\pi}(11-2\ln 2)$$

$$\frac{E}{E_{\text{FG}}} = \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{6}{35\pi} (11 - 2\ln 2) (a_s k_F)}$$

[Schäfer et al., NPA 762 (2005)]

- ightharpoonup Correct up to $\mathcal{O}(a_s k_F)^2$
- Bertsch parameter[†] $(a_s k_F \to \infty)$: $\xi_0 = 0.32$

 † Accepted value: $\xi_0 \simeq 0.37$

$$E = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_k^-}{1 - (\boldsymbol{a_s k_F}) \boldsymbol{F(P, k)}}$$
$$= \left[\frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots\right] E_{FG}$$

Unitary limit ($E ightarrow \xi_0 E_{\mathrm{FG}}$)

$$F(P,k) \longmapsto \frac{10}{9\pi} (1-\xi_0)^{-1}$$

$$\frac{E}{E_{\text{FG}}} = \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{10}{9\pi} (1 - \xi_0)^{-1} (a_s k_F)}$$

[Lacroix, PRA 94 (2016)]

Antoine BOULET

Resummed formula for unitary gas

$$E = \left(\frac{4\pi a_s}{m}\right) \iint \frac{d^3P}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \frac{\theta_k^-}{1 - (\boldsymbol{a_s k_F}) \boldsymbol{F(P, k)}}$$
$$= \left[\frac{10}{9\pi} (\boldsymbol{a_s k_F}) + \frac{4}{21\pi} (11 - 2\ln 2) (\boldsymbol{a_s k_F})^2 + \cdots\right] E_{FG}$$

Unitary limit ($E ightarrow \xi_0 E_{\mathrm{FG}}$)

$$F(P,k) \longmapsto \frac{10}{9\pi} (1-\xi_0)^{-1}$$

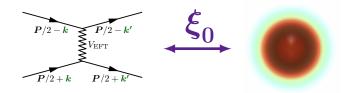
$$\frac{E}{E_{\text{FG}}} = \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{10}{9\pi} (1 - \xi_0)^{-1} (a_s k_F)}$$

[Lacroix, PRA 94 (2016)]

- ightharpoonup Correct up to $\mathcal{O}(a_s k_F)$
- Bertsch parameter $(a_s k_F \to \infty)$:

$$\xi_0 = 0.37$$
 (exact)

Non-empirical DFT based on LECs without free parameters: effective range generalization



7/19

Non-empirical DFT without free parameters

Effective range effect and neutron matter

$$\begin{split} \frac{E}{E_{FG}} &= \xi(a_s k_F, r_e k_F) \\ &= 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} \\ &= \underbrace{\frac{(r_e k_F) R_0}{1 - (a_s k_F)^{-1} U_1}}_{\text{zero-range part}} + \underbrace{\frac{(r_e k_F) R_0}{[1 - R_1 (a_s k_F)^{-1}] \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]}_{\text{effective range part}} \end{split}$$

Non-empirical DFT without free parameters

Effective range effect and neutron matter

$$\begin{split} \frac{E}{E_{FG}} &= \xi(a_s k_F, r_e k_F) \\ &= 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} + \frac{(r_e k_F) R_0}{\left[1 - R_1 (a_s k_F)^{-1}\right] \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{\left[1 - R_1 (a_s k_F)^{-1}\right] \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\ &= \frac{(r_e k_F) R_0}{(r_e k_F)^{-1} \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]} \\$$

Non-empirical DFT without free parameters Effective range effect and neutron matter

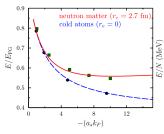
$$\begin{split} \frac{E}{E_{FG}} &= \xi(a_s k_F, r_e k_F) \\ &= 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} \\ &= \underbrace{\frac{(r_e k_F) R_0}{1 - (a_s k_F)^{-1} U_1}}_{\text{zero-range part}} + \underbrace{\frac{(r_e k_F) R_0}{[1 - R_1 (a_s k_F)^{-1}] \left[1 - R_1 (a_s k_F)^{-1} + R_2 (r_e k_F)\right]}_{\text{effective range part}} \end{split}$$

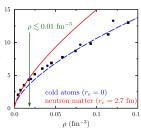
 $(U_0, U_1, R_0, R_1, R_2)$ adjusted without free parameter to reproduce:

- ▶ Low density limit $(|a_sk_F| \ll 1)$
- Unitary limit $(|a_s k_F| \to \infty)$

Effective range effect and neutron matter

$$\begin{split} \frac{E}{E_{FG}} &= \xi(a_s k_F, r_e k_F) \\ &= 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} \\ &= \underbrace{\frac{1}{1 - \frac{1}{1 - \frac{1}{1$$





- [Gezerlis & Carlson, PRC (2010)]
- [Carlson et al., PTEP (2012)]
- [Akmal & Pandharipande, PRC (1998)]
- [Friedman & Pandharipande, NPA (1981)]

Antoine BOULET

Ground State

thermodynamical properties

Some GS thermodynamical quantities

Non-empirical DFT: $E = \xi(a_s k_F, r_e k_F) E_{FG}$

$$P \equiv \rho^2 \frac{\partial E/N}{\partial \rho} \qquad \frac{1}{\kappa} \equiv \rho \frac{\partial P}{\partial \rho}$$

$$\frac{1}{\kappa} \equiv \rho \frac{\partial P}{\partial \rho}$$

$$\mu \equiv \frac{\partial \rho E/N}{\partial \rho}$$

Recent applications **00**00000

$$\rho = \frac{k_F^3}{3\pi^2}$$

Pressure P

$$\frac{P}{P_{FG}} = \xi + \frac{k_F}{2} \frac{\partial \xi}{\partial k_F}$$

Compressibility κ

$$\frac{\kappa_{FG}}{\kappa} = \xi + \frac{4k_F}{5} \frac{\partial \xi}{\partial k_F} + \frac{k_F^2}{10} \frac{\partial^2 \xi}{\partial k_F^2}$$

Chemical potential μ

$$\frac{\mu}{\mu_{FG}} = \xi + \frac{k_F}{5} \frac{\partial \xi}{\partial k_F}$$

Sound velocity c_s

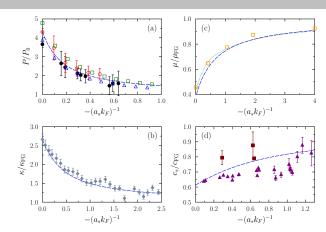
$$\left(\frac{c_s}{c}\right)^2 = (m\rho\kappa)^{-1}$$

Theories

- [Bulgac et al., PRA 78 (2008)]
- [Haussmann et al., PRA 75 (2007)]
- [Hu et al., Europhys. Lett. 74 (2006)]
- [Pieri et al., PRB 72 (2005)]
- [Astrakharchik et al., PRL 93 (2004)]

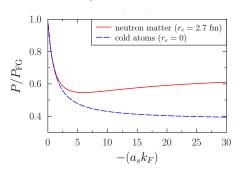
Experiments

- [Navon et al., Science 328 (2010)]
- [Navon et al., Science 328 (2010)] [Ku et al., Science 335 (2012)]
- [Weimer et al., PRL 114 (2015)]
- [Joseph et al., PRL 98 (2007)]



In general the non-empirical DFT works very well in cold atoms at unitarity and away from unitarity.

Neutron matter prediction



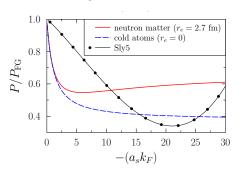
Strong effective range dependence

[AB & Lacroix, PRC 97 (2018)]

Effective range effect

Application to neutron matter

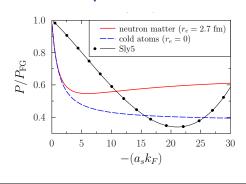
Neutron matter prediction



Strong effective range dependence

[AB & Lacroix, PRC 97 (2018)]

Neutron matter prediction



Strong effective range dependence

Static linear response

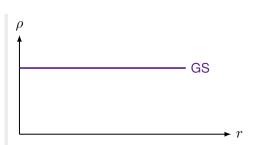
Linear response theory RPA formalism for infinite matter

System

$$E = \int d^3r \Big(\mathcal{K}[
ho(m{r})] + \mathcal{V}[
ho(m{r})] \Big)$$
 *** $\hat{V}_{
m ext} = \sum_j \phi(q,\omega) e^{im{q}\cdotm{r}_j - i\omega t}$

Response function χ

$$\rho(\boldsymbol{r}) \equiv \rho \rightarrow \rho + \delta \rho$$



Weak external field

System

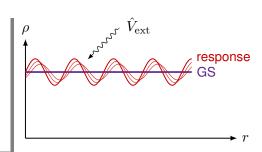
Weak external field

$$E = \int d^3r \Big(\underbrace{\mathcal{K}[\rho(\boldsymbol{r})]}_{\text{kinetic}} + \underbrace{\mathcal{V}[\rho(\boldsymbol{r})]}_{\text{interaction}} \Big) \quad \text{and} \quad \hat{V}_{\text{ext}} = \sum_j \phi(\boldsymbol{q}, \omega) e^{i\boldsymbol{q}\cdot\boldsymbol{r_j} - i\omega t}$$

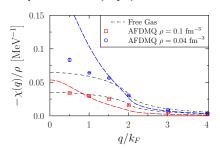
Response function χ

$$\rho(\mathbf{r}) \equiv \rho \to \rho + \delta\rho$$

$$\delta
ho = -\chi(q,\omega)\phi(q,\omega) \ \chi = \chi_0 \left[1 - rac{\delta^2 \mathcal{V}}{\delta \, o^2} \chi_0
ight]^{-1}$$



Empirical DFT (Sly5)



AFDMC match Free Fermi Gas response (unlike empirical DFT)

[Buraczynski and Gezerlis, PRL 116 (2016)]

Empirical DFT (Sly5)

0.15 Free Gas AFDMQ $\rho = 0.1 \text{ fm}^{-3}$ $-\chi(q)/\rho$ [MeV⁻¹] AFDMO $\rho = 0.04 \text{ fm}^{-3}$ 0.1 0.05 0.0 3 q/k_F

Non-empirical DFT



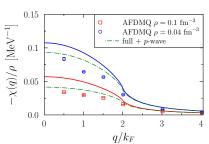
AFDMC match Free Fermi Gas response (unlike *empirical* DFT)

[Buraczynski and Gezerlis, PRL 116 (2016)]

Adding LO p – wave

$$\frac{E_p}{E_{FG}} = \frac{1}{\pi} (a_p k_F)^3$$

Non-empirical DFT + p – wave



AFDMC match Free Fermi Gas response (unlike *empirical* DFT)

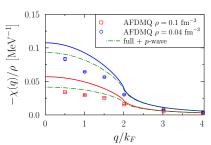
[Buraczynski and Gezerlis, PRL 116 (2016)]

Adding LO p – wave

$$\frac{E_p}{E_{FG}} = \frac{1}{\pi} (a_p k_F)^3$$

Non-empirical DFT + p – wave

Recent applications 00000000

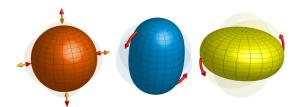


AFDMC match Free Fermi Gas response (unlike *empirical* DFT)

compensation effect of many contribution?

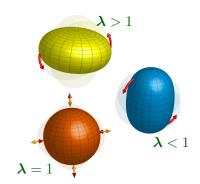
[Buraczynski and Gezerlis, PRL 116 (2016)]

Dynamical response: hydrodynamical regime



Anisoptropic trap

$$U(\mathbf{r}) = \frac{m\omega_0^2}{2} \left(x^2 + y^2 + \lambda^2 z^2 \right)$$



$$\frac{\omega_{rad}^p}{\omega_0} = \sqrt{2 \; \mathbf{\Gamma}}$$

$$\frac{\omega_{ax}^p}{\lambda\omega_0} = \sqrt{3 - \frac{1}{\Gamma}}$$

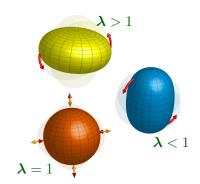
Recent applications 00000000

Antoine BOULET

Anisoptropic trap

$$U(\mathbf{r}) = \frac{m\omega_0^2}{2} \left(x^2 + y^2 + \lambda^2 z^2 \right)$$

- Polytropic EoS $P \propto \rho^{\Gamma}$ $\Gamma = \kappa P$ (adiabatic index of infinite system)



$$\frac{\omega_{rad}^p}{\omega_0} = \sqrt{2 \; \mathbf{\Gamma}}$$

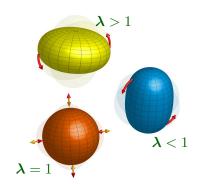
$$\frac{\omega_{ax}^p}{\lambda\omega_0} = \sqrt{3 - \frac{1}{\Gamma}}$$

Recent applications 00000000

Anisoptropic trap

$$U(\mathbf{r}) = \frac{m\omega_0^2}{2} \left(x^2 + y^2 + \lambda^2 z^2 \right)$$

- Polytropic EoS $P \propto \rho^{\Gamma}$ $\Gamma = \kappa P$ (adiabatic index of infinite system)
- Linearized hydrodynamic



$$\frac{\omega_{rad}^p}{\omega_0} = \sqrt{2 \; \mathbf{\Gamma}}$$

$$\frac{\omega_{ax}^p}{\lambda\omega_0} = \sqrt{3 - \frac{1}{\Gamma}}$$

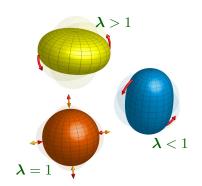
Recent applications 00000000

Antoine BOULET

Anisoptropic trap

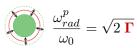
$$U(\mathbf{r}) = \frac{m\omega_0^2}{2} \left(x^2 + y^2 + \lambda^2 z^2 \right)$$

- Polytropic EoS $P \propto \rho^{\Gamma}$ $\Gamma = \kappa P$ (adiabatic index of infinite system)
- Linearized hydrodynamic



Recent applications 00000000

Solution of cigar-shaped / prolate ($\lambda \ll 1$):

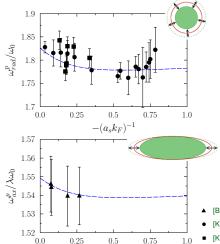


$$\frac{\omega_{ax}^p}{\lambda \omega_0} = \sqrt{3 - \frac{1}{\Gamma}}$$

[Heiselberg, PRL 93 (2004)]

Antoine BOULET

Collective mode in trapped cold atoms ($r_e = 0$)



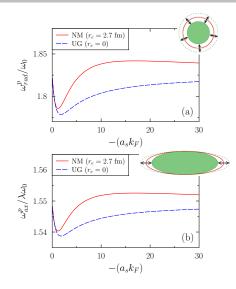
 $-(a_s k_F)^{-1}$

Prolate collective modes

$$\frac{\omega_{rad}^p}{\omega_0} = \sqrt{2 \Gamma}$$

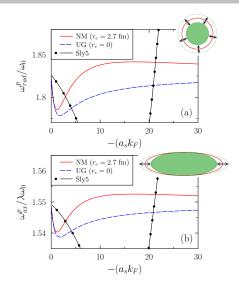
$$\frac{\omega_{ax}^p}{\lambda \omega_0} = \sqrt{3 - \frac{1}{\Gamma}}$$

- [Bartenstein et al., PRL 92 (2004)]
- [Kinast, PRA 70 (2004)]
- [Kinast, PRL 92 (2004)]



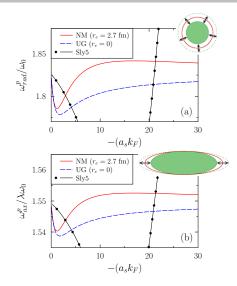
erties, Skyrme functional results

Collective mode in trapped neutron matter



As for the GS (quasi-) static properties, **Skyrme functional results are very different**

Tests and constrains DFT?

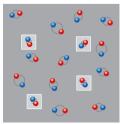


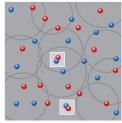
erties, Skyrme functional results

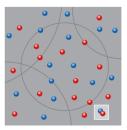
Tests and constrains DFT?

To a microscopic theory

exploration of resummation techniques







What about the quasi-particles properties?

Green functions and self-energy formalism

$$E = \int \frac{d^3k}{(2\pi)^3} G(\mathbf{k}) \Sigma^*(\mathbf{k})$$

$$ightharpoonup \operatorname{Re}igl[\Sigma^{\star}(m{k})igr] = arepsilon(m{k})
ightarrow rac{m{k}^2}{2m{m}^{\star}} + U_0$$
 (sp energy of qp)

What about the quasi-particles properties?

Green functions and self-energy formalism

$$E = \int \frac{d^3k}{(2\pi)^3} G(\mathbf{k}) \Sigma^*(\mathbf{k})$$

$$\mathbb{R}e\big[\Sigma^{\star}(\boldsymbol{k})\big] = \varepsilon(\boldsymbol{k}) \to \frac{\boldsymbol{k}^2}{2\boldsymbol{m}^{\star}} + U_0$$

(sp energy of qp)

 $\blacktriangleright \operatorname{Im} \left[\Sigma^{\star}(\boldsymbol{k}) \right] = \gamma(\boldsymbol{k})$

(life time of qp)

Antoine BOULET

What about the quasi-particles properties?

Green functions and self-energy formalism

$$E = \int \frac{d^3k}{(2\pi)^3} G(\mathbf{k}) \Sigma^*(\mathbf{k})$$

(sp energy of qp)

 $\blacktriangleright \operatorname{Im} \left[\Sigma^{\star}(\boldsymbol{k}) \right] = \gamma(\boldsymbol{k})$

(life time of qp)

Self-energy resummation

Relation with other theories

- Brueckner Hartree-Fock
- Landau Fermi liquid theory

$$E = \begin{cases} \mathcal{O}(a_s k_F) & \mathcal{O}(a_s k_F)^2 & \mathcal{O}(a_s k_F)^3 & \mathcal{O}(a_s k_F)^4 \\ \mathcal{O}(a_s k_F)^4 & \mathcal{O}(a_s k_F)^4 \\ \mathcal{O}(a_s k_F)^4 & \mathcal{O}(a_s k_F)^4 \end{cases}$$

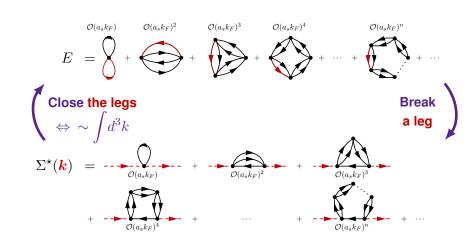
What about the quasi-particles properties?

Break a leg

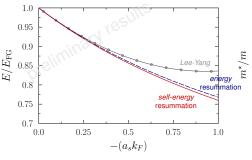
$$\Sigma^{\star}(\boldsymbol{k}) = \underbrace{\hspace{1cm}}_{\mathcal{O}(a_{s}k_{F})^{3}} + \underbrace{\hspace{1cm}}_{\mathcal{O}(a_{s}k_{F})^{3}} +$$

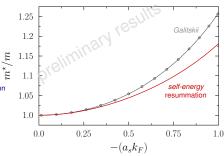
Antoine BOULET

What about the quasi-particles properties?



What about the quasi-particles properties?





Lee-Yang formula

$$\frac{E}{E_{FG}} = 1 + \frac{10}{9\pi} (a_s k_F) + \frac{4}{21\pi^2} (11 - 2\ln 2)(a_s k_F)^2 + \cdots$$

Galitskii formula

$$\frac{m^*}{m} = 1 + \frac{4}{15\pi^2} (7\ln 2 - 1)(a_s k_F)^2$$

Summary and perspectives

- ► A functional without free parameters was recently proposed and reproduce very well the properties of cold atoms
- ► The functional reproduce the *ab-initio* results at low density for neutron matter taking in account the effective range effect
- The static response reproduces reasonably AFDMC calculation for neutron matter
- ► The collective mode should be efficient to test and constrain the functional theories

► Short-term project

- Validity of ressumation to justify the functional
- Include the effective mass effect
- ► Include the pairing in the functional (study more precisely the BEC-BCS crossover)

Long-term project

- Include the 3-body interaction
- Extend the theory to symmetric matter, finite nuclei and finite quantum droplet (statics and dynamics)
- Include other partial waves

References I

- D. Lacroix, **A. Boulet** et al., Phys. Rev. C **95**, 054306 (2017)
- D. Lacroix, Phys. Rev. A 94, 043614 (2016)
- J. V. Steele, arXiv:nucl-th/0010066 (2000)
- T. Schäfer, C.-W. Kao, and S. R. Cotanch, Nucl. Phys. A **762**, 82 (2005)
- M. Buraczynski and A. Gezerlis, Phys. Rev. Lett. **116**, 152501 (2016)
- J. Carlson, S. Gandolfi and A. Gezerlis, Prog. Theor. Exp. Phys. 01A209 (2012)
- A. Akmal, V. R. Pandharipande and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

References II

- A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010)
- B. Friedman and V. Pandharipande, Nucl. Phys. A 361, 502 (1981)
- M. M. Forbes and R. Sharma, Phys. Rev. A 90, 043638 (2014)
- P. Zou et al., New J. Phys. 18, 113044 (2016)
- S. Hoinka et al., Phys. Rev. Lett. 109, 050403 (2012)
- S. Moroni, D. M. Ceperley and G. Senatore, Phys. Rev. Lett. **75**, 689 (1995)
- S. Moroni, D. M. Ceperley and G. Senatore, Phys. Rev. Lett. **75**, 689 (1995)
- A. Schwenk, B. Friman and G.E. Brown, Nucl. Phys. A 713, 191 (2003)
- J. Wambach, T.L. Ainsworth, D. Pines, Nucl. Phys. A 555 (1993)

- B. Friedman and V. Pandharipande, Nucl. Phys. A 361, 502 (1981)
- C. Drischler, V. Somà, and A. Schwenk Phys. Rev. C 89, 025806 (2014)
- A. Bulgac and G. F. Bertsch, Phys. Rev. Lett. 94, 070401 (2005)
- S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)
- H. Heiselberg, Phys. Rev. Lett. 93, 040402 (2004).
- M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag and R. Grimm, Phys. Rev. Lett. **92**, 203201 (2004)
- J. Kinast, A. Turlapov and J. E. Thomas, Phys. Rev. A **70**, 051401 (2004)
- J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov and J. E. Thomas, Phys. Rev. Lett. **92**, 150402 (2004)

- N. Navon, S. Nascimbene, F. Chevy and C. Salomon, Science 328, 729 (2010)
- A. Bulgac, J. Drut, P. Magierski, Phys. Rev. A 78, 023625 (2008)
- H. Hu, X. Liu and P. Drummond, Europhys. Lett. 74, 574 (2006)
- R. Haussmann, W. Rantner, S. Cerrito and W. Zwerger, Phys. Rev. A 75, 023610 (2007)
- P. Pieri, L. Pisani and G. C. Strinati, Phys. Rev. B 72, 012506 (2005)
- W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey and H. Moritz, Phys. Rev. Lett. 114, 095301 (2015)
- J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov and J. E. Thomas, Phys. Rev. Lett. 98, 170401 (2007)

- M. J. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science 335, 563 (2012)
- G. E. Astrakharchik, J. Boronat, J. Casulleras and S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)
- C.-J. Yang, M. Grasso, and D. Lacroix, Phys. Rev. C 94, 034311 (2016)
- C. A. Regal and D. S. Jin, Phys. Rev. L 90, 230404 (2003)