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Selected applications and/or extensions (see Denis’ talk)

Constraint on unitarity limits
as →±∞ (ultracold atoms + NM)

• thermodynamics of Fermi gas

E
EFG

= 1 + (askF )A0
1− (askF )A1

Range of validity:
• MBPT: ρ ∼ 10−6 fm−3

• This work: ρ ∼ 10−2 fm−3

Including quasi-particle properties
[AB, Lacroix, J. Phys. G]

• effective mass of Fermi gas

Generalization including
effective range effect

• EOS of dilute neutron matter
[Lacroix, AB, et al., PRC 95 (2017)]

• static and dynamical linear
response + collective modes
[AB, Lacroix, PRC97 (2018)]
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[Gezerlis et al., PRC81 (2010)] �

[Carlson et al., PTEP 01A209 (2012)] •

neutron matter

cold atom



Motivation to include quasi-particle properties

External field Vext applied on the system E =
∫

d3r [K(r) + V(r)]
induce a change in density ρ→ ρ+ δρ (here: m? = m)

with δρ = χ(q, ω)× Vext = χ0(q, ω)× Vext

1− χ0(q, ω) δ2V
δρ2(χ0 : Lindhard functions)

Static response (ω = 0)
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7 pairing gap ∆
[AB, Lacroix, PRC97 (2018)]

Extend to self-energy → quasi-particle properties (focus on m?) 2/14



Strategy

1. Non-empirical functionals based on resummation technique
• Resummation of Ladder diagrams for the energy
• Phase-Space average approximation

2. Non-perturbative approach:
resummation of the quasi-particle properties

Goal: obtain explicit and simple form for the self-energy
• extend the Phase-Space average to the self-energy
• coherently according to the approximate energy (HvH theorem)



Basics of diagrammatic framework at zero temperature

E = 3
5

k2
F

2m + E (1) + E (2) + · · · [Hammer and Furnstahl, NPA678 (2000)]

G(ω, k) =
(ki, ωi)

σ σi: Green’s functions〈
k
∣∣VEFT

∣∣k′〉 =
1

2

3

4

= C0 = 4πas
m

(Directly connected to ultracold atoms physics)

Contributing energy diagrams

[Ladder approximation]

E(1) = → (askF ) → Hartree − Fock

E(2) = → (askF )2 → Lee − Yang

E(3) = +

E(4) = + + + +

[Kaiser, NPA860 (2011)]
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Ladder approximation for the energy

Energy resummation

Eint =
∞∑

n=1
= 80
πk5

F
EFG

∫ kF

0
s2ds

√
k2

F−s2∫
0

tdt atan (askF )πI(s, t)
π − (askF )R(s, t)

E pp
int =

∞∑
n=1

= 80
πk5

F
EFG

∫ kF

0
s2ds

√
k2

F−s2∫
0

tdt (askF )πI(s, t)
π − (askF )F (s, t)

[Kaiser, NPA860 (2011)] (no pairing, no self-consistency)

F (s, t) = 1 + s
kF
− t

kF
ln
∣∣∣kF + s + t

kF + s − t

∣∣∣+ k2
F − s2 − t2

2skF
ln
∣∣∣∣ (kF + s)2 − t2

kF − s2 − t2

∣∣∣∣
R(s, t) = F (s, t) + F (−s, t)

I(s, t) =
{

t/kF for 0 ≤ t < kF − s
(k2

F − s2 − t2)/2skF for kF − s ≤ t <
√

k2
F − s2
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Ladder approximation for the energy

Energy resummation

Eint =
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n=1
= 80
πk5

F
EFG

∫ kF

0
s2ds

√
k2

F−s2∫
0

tdt atan (askF )πI(s, t)
π − (askF )R(s, t)
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int =
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n=1

= 80
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F
EFG

∫ kF

0
s2ds

√
k2

F−s2∫
0

tdt (askF )πI(s, t)
π − (askF )F (s, t)

[Kaiser, NPA860 (2011)] (no pairing, no self-consistency)

3 Contains terms to all order in (askF ) in a compact form
3 Expansion in (askF )→ Lee–Yang formula
3 Finite limit at unitarity (as →∞)
7 Implicit function of ρ = k3

F/3π2 (goal: explicit function)
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Ladder approximation for the energy
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3 correct limit at askF � 1 (Lee-Yang expansion)
3 finite limit at unitarity
7 strong dependence of retained diagrams
7 complicated function of (askF )
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Phase-space average Approximation (PSA)

Epp
EFG

= 1 + 80
πk5

F

∫
s2ds

∫
tdt

phase space

(askF )πI(s, t)
1− (askF/π)F (s, t) −→

as kF→∞
0.24

PSA of pp ladder resummation = GPS functional

E
EFG

= 1 + 10
9π

(askF )
1− (askF/π)〈F 〉 −→as kF→∞

0.32

[Heiselberg, PRA63 (2001)] [Schäfer et al., NPA762 (2005)] [Haussmann et al., PRA75 (2007)]

3 Lee–Yang formula 〈F 〉 = 6
35 (11− 2 ln 2)

∼ More predictive near unitarity: ξ0 = 0.37 (accepted value)
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Phase-space average Approximation (PSA)

E
EFG

= 1 + 80
πk5

F

∫
s2ds

∫
tdt atan (askF )I(s, t)

1− (askF/π)R(s, t) =
as kF→∞

0.51

PSA of full ladder resummation = APS functional

E
EFG

= 1 + 16
3π atan 5/24(askF )

1− (askF/π)〈R〉 =
as kF→∞

0.36

3 Unitary limit well reproduced
(accepted value: ξ0 = 0.37)

3 Exact Lee–Yang expansion
3 No adjustment !

[AB, Lacroix, J. Phys. G]

EOS in cold atoms systems
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Quasi-particle properties:
Self-Energy Resummation

• Ladder Resummation +
• Phase-Space average Approximation



Link with Landau theory of Fermi liquid

Eint =
∑

kk′Veff (k, k ′)nknk′

δE =
∑

k Σ?(k)δnk 7−→

Σ?(k) = U(k) + iW (k) = δE
δnk

εk = εkF + (k − kF ) kF
m?

+ · · ·

nk → nk + δnk
Low-lying

excited states

vkF ≡ ∂kεk
∣∣
k=kF

≡ kF
m?

Close to
Fermi surface

[Landau (1957)][
εk = k2

2m + U(k)
1

2γk
= −W (k)

]

Hugenholtz – van Hove theorem (HvH theorem)

µ = E (N + 1)− E (N) = ∂E
∂N = εkF

[Hugenholtz, Van Hove, Physica XXIV (1958)]

8/14

kF



Link with Landau theory of Fermi liquid

Eint =
∑

kk′Veff (k, k ′)nknk′

δE =
∑

k Σ?(k)δnk 7−→

Σ?(k) = U(k) + iW (k) = δE
δnk

εk = εkF + (k − kF ) kF
m?

+ · · ·

nk → nk + δnk
Low-lying

excited states

vkF ≡ ∂kεk
∣∣
k=kF

≡ kF
m?

Close to
Fermi surface

[Landau (1957)][
εk = k2

2m + U(k)
1

2γk
= −W (k)

]

Hugenholtz – van Hove theorem (HvH theorem)

µ = E (N + 1)− E (N) = ∂E
∂N = εkF

[Hugenholtz, Van Hove, Physica XXIV (1958)]

8/14

kF



Ladder approximation: single-particle energy [Kaiser, EPJA49 (2013)]
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k/kF

pp/hh ladders
only pp ladders

JILA exp. (2008)
BHF (no pairing)

3 valid at low density → Galitskii formula [Galitskii, JETP34 (1958)]:
ε(k)
µFG

= 4
3π (askF ) + φ2(k)(askF )2 + · · ·

3 finite limit at unitarity (askF →∞)
7 non-predictive for askF � 1: pathologies
7 strong dependence of retained diagrams
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[Stewart, Gaebler, Jin, Nature 454 (2008)]
[Doggen et al., Nature (2015)]



Phase-Space Average approximation of the
resummed self-energy

Focus on the single particle potential U(k)
inside the Fermi surface (k ≤ kF )



Strategy of the Self-energy resummation

ε(k) = k2

2m +
∫

st
U(s, t, k)

E = EFG +
∫

st
E(s, t)
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Phase-space average approximation: GPS case

E
EFG

= 1 + 10
9π

(askF )
1− (askF/π) 9π2

14 φ2(kF )
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Phase-space average approximation: GPS case
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Single particle energy
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3 exact expansion up to (askF )2

→ Galitskii formula
3 pathologies removed for

askF � 1 (more predictive)
3 simpler function of the density
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Chemical potential and effective mass
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3 Expansion valid up to (askF )2 → Galitskii formula
3 Simple and explicit dependence in density
3 Finite limit at Unitarity

[AB, Lacroix, J. Phys. G] 13/14



Summary and outlook

• Ladder (pp or pp/hh) resummation from E to Σ?(k)
7 quite complex density dependence
7 strong dependence on the selected diagrams

• Phase-space approximation of the energy
3 simple and explicit density dependence
3 predictive from low density to unitarity without adjustment

• Phase-space approximation of the self-energy
3 simple and explicit density dependence
3 predictive at low and intermediate density
7 Unitary limit far from expected results: need to be adjusted
7 Pairing effect: from normal to superfluid

Perspectives towards non-empirical EDF
• Cross-fertilization: EDF vs. ab initio → experiment

• Complicated but generalizable
(higher order in the interaction, pairing, bound states,...)

• Make explicit the link with density functional theory
→ apply to finite systems

14/14
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How to relate the bare interaction to DFT
and make it less empirical?

In this work → a focus on infinite matter



Low density Fermi gas limit as a guidance

〈
k
∣∣VEFT

∣∣k′〉 = C0 + C2
2
[
k2 + k′2]

s−wave

+ · · ·

C0 = 4π
m as C2 = 2π

m a2
s rs

[Steele and Furnstahl, NPA762 (2000)]
[Beane et al., nucl-th/0008064 (2000)]
[Hammer and Furnstahl, NPA678 (2000)]

Neutron Matter
as = −18.9 fm rs = 2.7 fm

E
(
ρ = k3

F
3π2

)
= 3

5
k2

F
2m + E (1) + E (2) + · · · = 3

5
k2

F
2m

[
1 + 10

9π (askF ) + · · ·
]

Difficulties of the perturbative approach

• Perturbative approach valid if |askF | � 1
• Non perturbative approaches

• Standard MB techniques: BHF, SCGF, QMC, AFDMC, . . .
7 non-analytical in as kF

• Resummation technique
3 analytical in as kF (compatible with a DFT point of view)
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Connect EFT to EDF? (neuron matter case in s-wave channel)

Pionless EFT

〈k′|V EFT
nn |k〉 = C0 + C2

2

[
k′2 + k2

]
+ · · ·

C0 = 4πas
m & C2

C0
= as rs

2

Skyrme effective interaction

〈k′|V Sk
nn |k〉 = t0(1− x0)

+ 1
2 t1(1− x1)

[
k′2 + k2

]
+ · · ·

t0(1− x0) = 4πãs
m & t1(1− x1)

t0(1− x0) = ãs r̃s
2
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• Similar expression
• Skyrme parameters
6= physical LECs

Strong renormalization of the LECs from vacuum to saturation



How to relate the bare interaction to DFT
and make it less empirical?

↓
Can we understand the value of parameters

entering in the empirical EDFs?

One of the explored solution → resummation techniques



Can we understand the empirical Skyrme parameters?

Starting point:

E
EFG

= 1 + 16
3π atan 5/24(askF )

1− (askF/π)〈R〉

Rewritten as:
E

EFG
= 1 + 10

9π

[
ãs(kF )kF

]

Skyrme: VSk = t0(1− x0)δ(r)

E
EFG

= 1 + 10
9π

[
ãskF

]
with: 4π

m ãs = t0(1− x0)
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see also: [Lacroix, AB, et al., PRC95 (2017)]

ρsat



Towards finite systems

• Quasi-particle properties
effective effective mass m? ∼ t1(ρ)
→ self-energy (single particle potential)

Σ(k) = + + + · · ·+ + · · ·

[AB, Lacroix, J. Phys. G]

• First step towards finite systems→ ∇ρ, . . .
(Beyond Local Density Approximation)
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