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How to relate the bare interaction to DFT
and make it less empirical?

In this work → a focus on infinite matter



Contents

1. Many-Body Perturbation Theory for dilute Fermi gas
in a effective field theory framework

2. Non-perturbative approach: resummation technique

Goal
obtain explicit and simple form for the energy (self-energy)
as function of:

• the density
• the low energy constants of the interaction



The low-density Fermi gas limit: EFT guidance

〈
k
∣∣VEFT

∣∣k′〉 = C0 + C2
2
(
k2 + k′2)

s−wave

+ · · ·

C0 = 4π
m as C2 = 2π

m a2s rs

[Steele and Furnstahl, NPA762 (2000)]
[Beane et al., nucl-th/0008064 (2000)]
[Hammer and Furnstahl, NPA678 (2000)]

Neutron Matter
as = −18.9 fm
rs = 2.7 fm

Constructive MBPT

3 GS energy up to fourth order
[Wellenhofer et al., arXiv (2019)]

UV divergence properly treated
[Kaplan, Savage, Wise, NPB534 (1998)]
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Lee-Yang energy density functional

E (ρ) = EFG + E (1) + E (2) + · · ·
[
EFG = 3

5
k2F
2mρ

∣∣∣ ρ = k3F
3π2

]
= EFG

[
1 + 10

9π (askF ) + 4
21π2 (11− 2 ln 2)(askF )2 + · · ·

]
= 3(3π2)2/3

10m ρ5/3 + πas
m ρ2 + 6(11− 2 ln 2)a2s

35(3π2)−1/3m
ρ7/3 + · · ·

3 analytical dependence in term of ρ and as
Difficulties of the perturbative approach

• Perturbative approach valid if |askF | � 1
Neutron matter: as = −18.9 fm→ ρ . 10−6 fm−3 � ρ0 ' 0.16 fm3

• Non perturbative approaches
• Standard MB techniques: BHF, SCGF, QMC, AFDMC, . . .

3 very powerful
7 not explicit in askF

• Resummation technique
3 analytical in askF (compatible with a DFT point of view)

3/18



Lee-Yang energy density functional

E (ρ) = EFG + E (1) + E (2) + · · ·
[
EFG = 3

5
k2F
2mρ

∣∣∣ ρ = k3F
3π2

]
= EFG

[
1 + 10

9π (askF ) + 4
21π2 (11− 2 ln 2)(askF )2 + · · ·

]
= 3(3π2)2/3

10m ρ5/3 + πas
m ρ2 + 6(11− 2 ln 2)a2s

35(3π2)−1/3m
ρ7/3 + · · ·

3 analytical dependence in term of ρ and as
Difficulties of the perturbative approach

• Perturbative approach valid if |askF | � 1
Neutron matter: as = −18.9 fm→ ρ . 10−6 fm−3 � ρ0 ' 0.16 fm3

• Non perturbative approaches
• Standard MB techniques: BHF, SCGF, QMC, AFDMC, . . .

3 very powerful
7 not explicit in askF

• Resummation technique
3 analytical in askF (compatible with a DFT point of view)

3/18



Basics of diagrammatic framework at zero temperature

[Hammer and Furnstahl, NPA678 (2000)]

G(ω, k) =
(ki, ωi)

σ σi= nk
ω − ek + i0− + 1− nk

ω − ek + i0+〈
k
∣∣VEFT

∣∣k′〉 =
1

2

3

4

= C0 [nk = Θ(kF − k) | ek = k2/2m]

Contributing energy diagrams

[Ladder approximation]

E(1) = → (askF ) → Hartree − Fock

E(2) = → (askF )2 → Lee − Yang

E(3) = +

E(4) = + + + +

[Kaiser, NPA860 (2011)]
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Ladder approximation for the energy

Energy resummation

Eint =
∞∑
n=1

= 80EFG

πk5F

∫ kF

0
s2ds

∫ √k2F−s2

0
tdt

accessible phase space

atan (askF )πI(s, t)
π − (askF )R(s, t)

E pp
int =

∞∑
n=1

= 80EFG

πk5F

∫ kF

0
s2ds

∫ √k2F−s2

0
tdt

accessible phase space

(askF )πI(s, t)
π − (askF )F (s, t)

[Kaiser, NPA860 (2011)] (no pairing, no self-consistency)

F (s, t) = 1 + s
kF

− t
kF

ln
∣∣∣kF + s + t
kF + s − t

∣∣∣+ k2
F − s2 − t2

2skF
ln
∣∣∣∣ (kF + s)2 − t2

kF − s2 − t2

∣∣∣∣
R(s, t) = F (s, t) + F (−s, t)

I(s, t) =
{

t/kF for 0 ≤ t < kF − s
(k2

F − s2 − t2)/2skF for kF − s ≤ t <
√

k2
F − s2
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accessible phase space
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π − (askF )F (s, t)

[Kaiser, NPA860 (2011)] (no pairing, no self-consistency)

3 Contains terms to all order in (askF ) in a compact form
3 Expansion in (askF )→ Lee–Yang formula
3 Finite limit at unitarity (as →∞)
7 Implicit function of ρ = k3F/3π2 (goal: explicit function)
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Ladder approximation for the energy
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3 correct limit at askF � 1 (Lee-Yang expansion)
3 finite limit at unitarity
7 strong dependence of retained diagrams
7 complicated function of (askF )
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Phase-Space average Approximation

Epp
EFG

= 1 + 80
πk5F

∫
s2ds

∫
tdt

accessible phase space

(askF )πI(s, t)
1− (askF/π)F (s, t) −→

askF→∞
0.24

PSA of pp ladder resummation = GPS functional

E
EFG

= 1 + 10
9π

(askF )
1− (askF/π)〈F 〉 −→askF→∞

0.32

[Heiselberg, PRA63 (2001)] [Schäfer et al., NPA762 (2005)] [Haussmann et al., PRA75 (2007)]

3 Lee–Yang formula

〈F 〉 = 6
35 (11− 2 ln 2)

∼ More predictive near unitarity:
ξ0 = 0.37 (accepted value)
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Applications [M. Grasso, arXiv:1811.01039 [nucl-th] (2019)] (available online)

E
EFG

= 1 +
10
9π (askF )

1− 6
35π (11− 2 ln 2)(askF )

→

→ 1 +
10
9π (askF )

1− 10
9π (1− ξ0)−1(askF )

[Lacroix, PRA94 (2016)]
[Lacroix, AB, et al., PRC 95 (2017)]

3 unitary limit reproduced
7 Lee-Yang formula
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YGLO functional
B,R: Lee–Yang (low density)
→ non-empirical

C ,D,F : higher correlations (fit)
→ empirical

[Yang, Grasso, Lacroix, PRC94 (2016)]
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[Gezerlis et al., PRC81 (2010)] �

[Carlson et al., PTEP 01A209 (2012)] •

neutron matter

cold atom



Phase-Space average Approximation

E
EFG

= 1 + 80
πk5F

∫
s2ds

∫
tdt

accessible phase space

atan (askF )I(s, t)
1− (askF/π)R(s, t) =

askF→∞
0.51

PSA of full ladder resummation = APS functional

E
EFG

= 1 + 16
3π atan

5/24(askF )
1− (askF/π)〈R〉 =

askF→∞
0.36

3 Unitary limit well reproduced
(accepted value: ξ0 = 0.37)

3 Exact Lee–Yang expansion
3 No adjustment !

[AB, Lacroix, submitted to J. Phys. G]
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Discussion

Static response
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7 effective mass m?

Dynamical response
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7 pairing gap ∆
[AB, Lacroix, PRC97 (2018)]

Goal: extend to self-energy → quasi-particle properties (focus on m?)
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Quasi-particle properties:
Self-Energy Resummation

• Ladder Resummation +
• Phase-Space average Approximation



Link with Landau theory of Fermi liquid

Eint =
∑

kk′Veff (k, k ′)nknk′

δE =
∑

kΣ?(k)δnk 7−→

Σ?(k) = U(k) + iW (k) = δE
δnk

εk = εkF + (k − kF ) kFm?
+ · · ·

nk → nk + δnk
Low-lying

excited states

vkF ≡ ∂kεk
∣∣
k=kF

≡ kF
m?

Close to
Fermi surface

[Landau (1957)][
εk = k2

2m + U(k)
1

2γk = −W (k)

]

Hugenholtz – van Hove theorem (HvH theorem)

µ = E (N + 1)− E (N) = ∂E
∂N = εkF

[Hugenholtz, Van Hove, Physica XXIV (1958)]
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Ladder approximation: single-particle energy [Kaiser, EPJA49 (2013)]
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0.0
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ε(
k)

/
µ

FG

0.0 0.2 0.4 0.6 0.8 1.0

k/kF

pp/hh ladders
only pp ladders

JILA exp. (2008)
BHF (no pairing)

3 valid at low density → Galitskii formula [Galitskii, JETP34 (1958)]:
ε(k)
µFG

= 4
3π (askF ) + φ2(k)(askF )2 + · · ·

3 finite limit at unitarity (askF →∞)
7 bad prediction for askF � 1: pathological
7 strong dependence of retained diagrams
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[Stewart, Gaebler, Jin, Nature 454 (2008)]
[Doggen and Kinnumen, Nature (2015)]



Strategy

ε(k) = k2
2m +

∫
st
U(s, t, k)

E = EFG +
∫
st
E(s, t)
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Phase-space average approximation: GPS case

E
EFG

= 1 + 10
9π

(askF )
1− (askF/π) 9π2

14 φ2(kF )
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3 Lee-Yang Formula

3 HvH theorem µ = ε(kF )φ2(kF )→ φ2(k)

3 Galitskii Formula
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Single particle energy
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[AB, Lacroix, submitted to J. Phys. G]

3 exact expansion up to (askF )2

→ Galitskii formula
3 pathologies removed for

askF � 1 (better prediction)
3 simpler function of the density
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Chemical potential and effective mass

µ = ε(kF ) m
m?

= m
kF
∂εk
∂k

∣∣∣∣
kF
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MBPT: [Platter et al., NPA714 (2003)]
[AB, Lacroix, submitted to J. Phys. G]

3 Expansion valid up to (askF )2 → Galitskii formula
3 Simple and explicit dependence in density
3 Finite limit at Unitarity
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Discussion

µ = ε(kF ) m
m?

= m
kF
∂εk
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∣∣∣∣
kF

0.25

0.5

0.75

1.0

µ
/

µ
FG

0.0 0.25 0.5 0.75 1.0

−(askF)
−1

APS GPS

(a)

1.0

1.5

2.0

2.5

m
?
/

m

0.0 0.25 0.5 0.75 1.0

−(askF)
−1

(b)

superfluid x normal ��� GPS APS
(at unitarity) (expected) (expected)
µ/µFG 0.37 0.49 0.32 0.36
m?/m 1.19 1.24 2.18 1.88

It seems difficult to enforce unitarity without adjustment
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Summary

• Ladder (pp or pp/hh) resummation from E to Σ?(k)
7 quite complex density dependence
7 strong dependence on the selected diagrams

• Phase-space approximation of the energy
3 simple and explicit density dependence
3 predictive from low density to unitarity without adjustment

• Phase-space approximation of the self-energy
3 simple and explicit density dependence
3 predictive at low and intermediate density
7 Unitary limit far from expected results: need to be adjusted
7 Pairing effect: from normal to superfluid

Perspective

Make explicit the link with density functional theory
→ apply to finite systems
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