Density Functional Theory based on bare interaction From ultra-cold atoms to nuclear matter

Antoine BOULET

1st year PhD student (2016–2019) Supervisor: Denis LACROIX

Theory group, IPN Orsay boulet@ipno.in2p3.fr

・ロト ・日ト ・ヨト

Outline		

- Introduction: DFT, EFT, interactions, etc
- Cold atoms and unitary: link with Neutron Matter
- ▶ Build a functional density based on the LEC (*a_s*, *r_e*, ...)
- Some results in cold atoms (thermodynamic + linear response)
- From cold atoms to Neutron Matter case
- Conclusion and outlooks

Introduction				
Strongly co	rrelated Fermions i	n infinite matter		
Density Func	tional Theory (DFT) v	s. Effective Field Theo	prv (EFT)	

DFT (Kohn-Sham, etc.)

$$\underbrace{|\psi_{1,\dots,N}\rangle}_{N-body}\longmapsto \underbrace{\rho\longmapsto E[\rho]}_{1-body}$$

Nuclear DFT (Hartree-Fock like)

 $E[\rho] = \langle \psi[\rho] | T + V_{eff} | \psi[\rho] \rangle$ $V_{eff} = t_0 (1 + x_0 P_{\sigma}) + t_3 (1 + x_3 P_{\sigma}) \rho^{\beta}$

 $ho =
u/(6\pi^2)k_F^3$ density k_F Fermi momentum u degeneracy

Introduction			
Strongly cor	related Fermions in	n infinite matter	

Density Functional Theory (DFT) vs. Effective Field Theory (EFT)

DFT (Kohn-Sham, etc.)

$$\underbrace{|\psi_{1,\dots,N}\rangle}_{N-body}\longmapsto\underbrace{\rho\longmapsto E[\rho]}_{1-body}$$

Nuclear DFT (Hartree-Fock like)

$$E[\rho] = \langle \psi[\rho] | T + V_{eff} | \psi[\rho] \rangle$$
$$V_{eff} = t_0 (1 + x_0 P_{\sigma}) + t_3 (1 + x_3 P_{\sigma}) \rho^{\beta}$$

 $ho =
u/(6\pi^2)k_F^3$ density k_F Fermi momentum u degeneracy

Introduction			
Strongly correla	ted Fermions in inf	inite matter	

Density Functional Theory (DFT) vs. Effective Field Theory (EFT)

 $ho =
u/(6\pi^2)k_F^3$ density k_F Fermi momentum u degeneracy

Introduction				
Strongly co	rrelated Fermions i	n infinite matter		
Density Fund	tional Theory (DFT) v	s. Effective Field Theo	rv (EFT)	

DFT (Kohn-Sham, etc.)

EFT at low density (only s-scattering wave)

$$\underbrace{|\psi_{1,\dots,N}\rangle}_{N-body}\longmapsto\underbrace{\rho\longmapsto E[\rho]}_{1-body}$$

$$ho =
u/(6\pi^2)k_F^3$$
 density
 k_F Fermi momentum
 u degeneracy

 $V_{12}(\mathbf{k},\mathbf{k}')$

 $\mathbf{k_1} + \mathbf{k}$

 $\mathbf{k_2} + \mathbf{k'}$

$$\left\langle \mathbf{k} \left| V_{12}^{(EFT)} \right| \mathbf{k}' \right\rangle = \frac{4\pi}{m} \left[a_{s} + \frac{r_{e}a_{s}^{2}}{4} \left(\mathbf{k}^{2} + \mathbf{k}'^{2} \right) \right]$$

$$E(a_{s}k_{F}, r_{e}k_{F}) = E^{(1)} + E^{(2)} + \cdots$$

a_s: *s*-wave scattering length *r_e*: *s*-wave effective range

Neutron Matter: $a_s = -18.9 \text{ fm}$ $r_e = 2.7 \text{ fm}$

How to relate low energy constants
$$(a_s, r_e, ...)$$
 to density functionals?

 $\mathbf{k_1}$

Introduction			
Strongly co	rrelated Fermions in	n infinite matter	
Donoity Euro	tional Theory (DET) y	 Effective Field Thee 	

DFT (Kohn-Sham, etc.)

$$ho =
u/(6\pi^2)k_F^3$$
 density
 k_F Fermi momentum
 u degeneracy

$$\left\langle \mathbf{k} \left| V_{12}^{(EFT)} \right| \mathbf{k}' \right\rangle = \frac{4\pi}{m} \left[a_{s} + \frac{r_{e}a_{s}^{2}}{4} \left(\mathbf{k}^{2} + \mathbf{k'}^{2} \right) \right]$$

$$E(a_{s}k_{F}, r_{e}k_{F}) = E^{(1)} + E^{(2)} + \cdots$$

a_s: *s*-wave scattering length *r_e*: *s*-wave effective range

Neutron Matter: $a_s = -18.9 \text{ fm}$ $r_e = 2.7 \text{ fm}$

How to relate low energy constants $(a_s, r_e, ...)$ to density functionals?

Introduction	New Functional	Thermodynamics	Linear response	Summary
New insight fr Universality pro	om ultra-cold atoms a operties of strongly corre	t unitary lated fermion		
$\psi(r) \underset{r ightarrow c}{\sim}$	$\int_{\infty} \frac{e^{\delta(k)}}{kr} \sin(kr + \delta(k))$	$)) \qquad \lim_{k \to 0}$	$b_{0} k \cot \delta(k) = -\frac{1}{a_{s}} + b_{s}$	r _e k ²

▶ When $a_s \rightarrow \pm \infty$ and $\rho \rightarrow 0$, the potential details has no influence: Universality

BCS regime ($a_s < 0$)

▶ When $a_s \rightarrow \pm \infty$ and $\rho \rightarrow 0$, the potential details has no influence: Universality

When a_s → ±∞ and ρ → 0, the potential details has no influence: Universality

	New Functional ○●○○○		
New insight from	n ultra-cold atoms	at unitary	

Physical scales of interest

• At unitary: $a_s \rightarrow \pm \infty$ (in neutron matter, $a_s = -18.9$ fm).

[S. Kotochigova, Rep. Prog. Phys. 77 (9), 2015]

DFT at unitary (*r_ek_F expansion*)

$$\frac{E[\rho]}{E_{FG}} = \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e$$

 $\xi_0 \simeq 0.37$: Bertsch parameter $E_{FG} = rac{3}{5} rac{\hbar^2 k_F^2}{2m}$: Free Gas energy

	New Functional		
New insight fror	n ultra-cold atoms a	at unitary	

Physical scales of interest

• At unitary: $a_s \rightarrow \pm \infty$ (in neutron matter, $a_s = -18.9$ fm).

[S. Kotochigova, Rep. Prog. Phys. 77 (9), 2015]

DFT at unitary ($r_e k_F$ expansion)

$$\frac{E[\rho]}{E_{FG}} = \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e$$

 $\xi_0 \simeq 0.37$: Bertsch parameter $E_{FG} = rac{3}{5} rac{\hbar^2 k_F^2}{2m}$: Free Gas energy

	New Functional		
New insight fror	n ultra-cold atoms a	at unitary	

Physical scales of interest

• At unitary: $a_s \rightarrow \pm \infty$ (in neutron matter, $a_s = -18.9$ fm).

[S. Kotochigova, Rep. Prog. Phys. 77 (9), 2015]

DFT at unitary ($r_e k_F$ expansion)

$$\frac{E[\rho]}{E_{FG}} = \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e$$

 $\xi_0 \simeq 0.37$: Bertsch parameter $E_{FG} = rac{3}{5} rac{\hbar^2 k_F^2}{2m}$: Free Gas energy

What happens for Neutron Matter, *i.e.* a_s ∼ r_e and a_sk_F ≫ 1 (but not infinite)?

	New Functional		
Mary Issue of	6	£	

Particle-particle ladder diagrams contribution:

New Functional		Linear response	
	000		

New Functional ○○●○○		

New Functional ○○●○○		

Particle-particle ladder diagrams contribution: $\frac{4\pi\hbar^2 a_s}{m} \frac{3\pi^2}{k_r^3} \int \frac{d^3 P}{(2\pi)^3} \frac{d^3 k}{(2\pi)^3} \frac{\theta_k}{1 - (a_s k_F) f(k, P)}$ Epp $\underset{f \to \langle f \rangle}{\simeq} \quad \frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{6}{35\pi} (11 - 2 \ln 2)} = \frac{E_{FG}}{N} \frac{D_0}{1 - D_1 (a_s k_F)}$ $\underset{a,k_{F}\rightarrow 0}{\longrightarrow} \quad \frac{E_{FG}}{N} \left[\frac{10}{9\pi} (a_{s}k_{F}) + \frac{4}{21\pi^{2}} (11 - 2\ln 2) (a_{s}k_{F})^{2} + \cdots \right]$

New Functional ○○●○○		

Particle-particle ladder diagrams contribution: $\frac{4\pi\hbar^{2}a_{s}}{m}\frac{3\pi^{2}}{k_{r}^{3}}\int\frac{d^{3}P}{(2\pi)^{3}}\frac{d^{3}k}{(2\pi)^{3}}\frac{\theta_{k}}{1-(a_{s}k_{F})f(k,P)}$ Epp $\underset{f \to \langle f \rangle}{\simeq} \quad \frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \underbrace{\frac{6}{35\pi} (11 - 2 \ln 2)}(a_s k_F)} \equiv \frac{E_{FG}}{N} \frac{D_0}{1 - D_1 (a_s k_F)^{-1}}$ $\underset{a_{s}k_{F}\rightarrow 0}{\longrightarrow} \quad \frac{E_{FG}}{N} \left[\frac{10}{9\pi} (a_{s}k_{F}) + \frac{4}{21\pi^{2}} (11 - 2\ln 2) (a_{s}k_{F})^{2} + \cdots \right]$

New Functional		
00000		

$$\frac{E}{E_{FG}} = \xi(a_s k_F, r_e k_F)$$

= $\underbrace{1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1}}_{\text{zero-range part}} + \underbrace{\frac{R_0(r_e k_F)}{[1 - R_1(a_s k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]}_{effective range part}$

Unitary limit $(a_s k_F \rightarrow -\infty, r_e k_F \ll 1)$

 $\xi \rightarrow \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e + \cdots$

[D. Lacroix, PRA 94, 043614 (2016)] [D. Lacroix, A.B. *et al.*, PRC 95, 054306 (2017)

$$\xi \rightarrow 1 + \frac{10}{9\pi}(a_s k_F) + \frac{1}{6\pi}(r_e k_F)(a_s k_F)^2 + \cdots$$

New Functional		
00000		

$$\frac{E}{E_{FG}} = \xi(a_s k_F, r_e k_F)$$

$$= \underbrace{1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1}}_{\text{zero-range part}} + \underbrace{\frac{R_0(r_e k_F)}{[1 - R_1(a_s k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]}_{effective range part}$$

Unitary limit $(a_{s}k_{F} \rightarrow -\infty, r_{e}k_{F} \ll 1)$

 $\xi \rightarrow \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e + \cdots$

[D. Lacroix, PRA 94, 043614 (2016)] [D. Lacroix, A.B. *et al.*, PRC 95, 054306 (2017)]

$$\xi
ightarrow 1 + rac{10}{9\pi}(a_sk_F) + rac{1}{6\pi}(r_ek_F)(a_sk_F)^2 + \cdots$$

New Functional		
00000		

$$\frac{E}{E_{FG}} = \xi(a_s k_F, r_e k_F)$$

= $\underbrace{1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1}}_{\text{zero-range part}} + \underbrace{\frac{R_0(r_e k_F)}{[1 - R_1(a_s k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]}_{\text{effective range part}}$

Unitary limit $(a_s k_F \rightarrow -\infty, r_e k_F \ll 1)$

$$\xi \rightarrow \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e + \cdots$$

[D. Lacroix, PRA 94, 043614 (2016)]
[D. Lacroix, A.B. *et al.*, PRC 95, 054306 (2017)]

$$\xi \rightarrow 1 + \frac{10}{9\pi}(a_s k_F)$$

 $+ \frac{1}{6\pi}(r_e k_F)(a_s k_F)^2 + \cdots$

New Functional		
00000		

$$\frac{E}{E_{FG}} = \xi(a_s k_F, r_e k_F)$$

= $\underbrace{1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1}}_{\text{zero-range part}} + \underbrace{\frac{R_0(r_e k_F)}{[1 - R_1(a_s k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]}_{\text{effective range part}}$

Unitary limit $(a_s k_F \rightarrow -\infty, r_e k_F \ll 1)$

$$\xi \rightarrow \xi_0 + (r_e k_F) \eta_e + (r_e k_F)^2 \delta_e + \cdots$$

[D. Lacroix, PRA 94, 043614 (2016)][D. Lacroix, A.B. *et al.*, PRC 95, 054306 (2017)]

$$\xi \rightarrow 1 + \frac{10}{9\pi} (a_s k_F) + \frac{1}{6\pi} (r_e k_F) (a_s k_F)^2 + \cdots$$

New Functional		

Comparison of energy with *ab initio* calculations

Low density

- [A. Gezerlis and J. Carlson, PRC 81, 025803 (2010)]
- [J. Carlson, S. Gandolfi and A. Gezerlis, Prog. Theor. Exp. Phys. 01A209 (2012)]

Up to saturation density

- [A. Akmal, V. R. Pandharipande and D.
 G. Ravenhall, PRC 58, 1804 (1998).]
- [B. Friedman and V. Pandharipande, Nucl. Phys. A**361**, 502 (1981)]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Thermodynamics •00	

$$\frac{E}{E_{FG}} = \xi(a_{s}k_{F}, r_{e}k_{F}) \qquad (FG : Free Gas)$$

$$P \equiv \rho^{2}\frac{\partial E/N}{\partial \rho} \qquad \frac{1}{\kappa} \equiv \rho\frac{\partial P}{\partial \rho} \qquad \mu \equiv \frac{\partial \rho E/N}{\partial \rho} \qquad \rho = \frac{k_{F}^{3}}{3\pi^{2}}$$
sure P

$$\frac{P}{P_{FG}} = \xi + \frac{k_{F}}{2}\frac{\partial \xi}{\partial k_{F}} \qquad Chemical potential \mu$$

$$\frac{\mu}{\mu_{FG}} = \xi + \frac{k_{F}}{5}\frac{\partial \xi}{\partial k_{F}}$$
pressibility κ
Sound velocity c_{s}

$$\frac{\kappa_{FG}}{\kappa} = \xi + \frac{4k_F}{5} \frac{\partial \xi}{\partial k_F} + \frac{k_F^2}{10} \frac{\partial^2 \xi}{\partial k_F^2}$$

$$\left(\frac{c_s}{c}\right)^2 = (m\rho\kappa)^{-1}$$

	Thermodynamics	

Some thermodynamical quantities

$$\frac{E}{E_{FG}} = \xi(a_{s}k_{F}, r_{e}k_{F}) \qquad (FG : Free Gas)$$

$$P \equiv \rho^{2}\frac{\partial E/N}{\partial \rho} \qquad \frac{1}{\kappa} \equiv \rho\frac{\partial P}{\partial \rho} \qquad \mu \equiv \frac{\partial \rho E/N}{\partial \rho} \qquad \rho = \frac{k_{F}^{3}}{3\pi^{2}}$$
Pressure P
$$\frac{P}{P_{FG}} = \xi + \frac{k_{F}}{2}\frac{\partial \xi}{\partial k_{F}} \qquad Chemical potential \mu$$

$$\frac{\mu}{\mu_{FG}} = \xi + \frac{k_{F}}{5}\frac{\partial \xi}{\partial k_{F}}$$

Compressibility κ

$$\frac{\kappa_{FG}}{\kappa} = \xi + \frac{4k_F}{5} \frac{\partial \xi}{\partial k_F} + \frac{k_F^2}{10} \frac{\partial^2 \xi}{\partial k_F^2}$$

Sound velocity cs

$$\left(\frac{c_s}{c}\right)^2 = (m\rho\kappa)^{-1}$$

	Thermodynamics	
	000	

Ultra-cold atoms results ($r_e = 0$) near unitary Comparison between experimental and theoretical data

[A.B. and D. Lacroix, in preparation]

э

	Thermodynamics ○○●	

Effect of effective range at unitary ($a_{
m s}=-\infty$)

[A.B. and D. Lacroix, in preparation]

<ロト < 四ト < 三ト < 三ト

Э.

	Linear response	

Linear response theory in a nutshel RPA formalism for infinite matter

$$E = \int d\mathbf{r} \left(\underbrace{\mathcal{K}[\rho(\mathbf{r})]}_{kinetic} + \underbrace{\mathcal{V}[\rho(\mathbf{r})]}_{interaction} \right)$$

Response function χ

$$\rho(\mathbf{r}) \equiv \rho \to \rho + \delta \rho$$

External field

$$\hat{V}_{\mathrm{ext}} = \sum_{j} \phi(\boldsymbol{q}, \omega) e^{i \mathbf{q} \cdot \mathbf{r}_{\mathrm{j}} - i \omega t}$$

Static response function

$$\chi(q) = \lim_{\omega \to 0} \chi(q, \omega)$$

$$\delta \rho = -\chi(\boldsymbol{q}, \omega)\phi(\boldsymbol{q}, \omega)$$
$$\chi = \chi_0 \left[1 - \frac{\delta^2 \mathcal{V}}{\delta \rho^2} \chi_0\right]^{-1}$$

Compressibility sum-rule

$$\lim_{q\to 0} \chi(q) = -\rho^2 \kappa$$

▲ 同 ▶ ▲ 三 ▶

			Linear response	
			0000	
Linear respo	onse theory in a nut	tshell		

RPA formalism for infinite matter

$$E = \int d\mathbf{r} \left(\underbrace{\mathcal{K}[\rho(\mathbf{r})]}_{kinetic} + \underbrace{\mathcal{V}[\rho(\mathbf{r})]}_{interaction} \right)$$

Response function χ

$$\rho(\mathbf{r}) \equiv \rho \to \rho + \delta \rho$$

$$\delta \rho = -\chi(\boldsymbol{q}, \omega)\phi(\boldsymbol{q}, \omega)$$
$$\chi = \chi_0 \left[1 - \frac{\delta^2 \mathcal{V}}{\delta \rho^2} \chi_0\right]^{-1}$$

External field

$$\hat{V}_{\text{ext}} = \sum_{j} \phi(\boldsymbol{q}, \omega) e^{i \boldsymbol{q} \cdot \boldsymbol{r}_{j} - i \omega t}$$

Static response function

$$\chi(q) = \lim_{\omega \to 0} \chi(q, \omega)$$

Compressibility sum-rule

$$\lim_{q\to 0} \chi(q) = -\rho^2 \kappa$$

	Linear response ●000	

RPA formalism for infinite matter

$$E = \int d\mathbf{r} \left(\underbrace{\mathcal{K}[\rho(\mathbf{r})]}_{kinetic} + \underbrace{\mathcal{V}[\rho(\mathbf{r})]}_{interaction} \right)$$

Response function χ

$$\rho(\mathbf{r}) \equiv \rho \to \rho + \delta \rho$$

$$\delta \rho = -\chi(\boldsymbol{q}, \omega)\phi(\boldsymbol{q}, \omega)$$
$$\chi = \chi_0 \left[1 - \frac{\delta^2 \mathcal{V}}{\delta \rho^2} \chi_0\right]^{-1}$$

External field

$$\hat{V}_{\text{ext}} = \sum_{j} \phi(\boldsymbol{q}, \omega) e^{i \boldsymbol{q} \cdot \boldsymbol{r}_{j} - i \omega t}$$

Static response function

$$\chi(q) = \lim_{\omega \to 0} \chi(q, \omega)$$

Compressibility sum-rule

$$\lim_{q\to 0} \chi(\mathbf{q}) = -\rho^2 \kappa$$

• • • • • • • • • • • •

- E - N

	New Functional	Thermodynamics	Linear response ○●○○	
Linear static res	ponse function for	neutron matter ($r_{e} =$	2.7 fm)	

Comparison with recent QMC calculation

[M. Buraczynski and A. Gezerlis, PRL **116**, 152501 (2016)] [**A.B.** and D. Lacroix, *in preparation*]

			Linear response ○●○○	
Linear static re	esponse function	for neutron matter	$(r_{\rm o}=2.7~{\rm fm})$	

Comparison with recent QMC calculation

[M. Buraczynski and A. Gezerlis, PRL **116**, 152501 (2016)] [**A.B.** and D. Lacroix, *in preparation*]

Antoine BOULET

2

• • • • • • • • • • • •

-

	New Functional	Thermodynamics	Linear response ○●○○	
Linear static res	ponse function for	neutron matter ($r_{e} =$	2.7 fm)	

Comparison with recent QMC calculation

[M. Buraczynski and A. Gezerlis, PRL **116**, 152501 (2016)] [**A.B.** and D. Lacroix, *in preparation*]

Antoine BOULET

э

			Linear response ○○●○	
Effective ma	iss influence on the	static response		

Density independent effective mass case

2

< ≥ > < ≥ >

			Linear response ○○○●	
Role of pair	ing and superfluidit	y on the dynamical	response	
Come back to	\sim unitary day ($a \rightarrow -$	∞ and $r = 0$)		

Dynamical external field

$$\hat{V}_{\mathrm{ext}} = \sum_{j} \phi(\boldsymbol{q}, \omega) \boldsymbol{e}^{i \mathbf{q} \cdot \mathbf{r}_{\mathrm{j}} - i \omega t}$$

Response function

$$\chi(\boldsymbol{q},\omega) = rac{\chi_0(\boldsymbol{q},\omega)}{1 - rac{\delta^2 \mathcal{V}}{\delta
ho^2} \chi_0(\boldsymbol{q},\omega)}$$

			Linear response 000●	
Role of pairing a	and superfluidity on	the dynamical resp	onse	

Come back to unitary gas ($a_s \rightarrow -\infty$ and $r_e = 0$)

Antoine BOULET

▲ 同 ▶ ▲ 三 ▶

	New Functional	Thermodynamics 000	Linear response	Summary
Summary				

- A functional without free parameters was recently proposed and reproduce thermodynamical properties of cold atoms (without effective range)
- ▶ The functional reproduce the QMC results at low density $(\rho \lesssim 0.01 \text{ fm}^{-3})$ for Neutron Matter taking in account the effect of effective range
- The static response reproduce reasonably (better than phenomenological EDF) the recent QMC calculations

Short-term Outlook

- Include the effective mass effect
- Include the pairing in the functional
- Application to finite Quantum Droplet (statics and dynamics)

Long-term Outlook

- Extend the theory to Symmetric Matter and finite nuclei
- Study more precisely the BEC-BCS crossover